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In this thesis, we study the intersection of current psychiatric 
clinical practice and personalized psychiatry, delving into the po-
tential of stratified psychiatry to enhance treatment outcomes. 

By investigating the role of potential biomarkers, including genetic 
factors and brain activity, through the utilization of large datasets 
and innovative methodologies, we aim to uncover insights that could 
revolutionize psychiatric care.

LIMITATIONS OF CURRENT CLINICAL PRACTICE AND  
ALTERNATIVES 

In current clinical practice, the Diagnostic and Statistical Manual of 
Mental Disorders (DSM; version 5 (APA 2013) at the time of writing) 
is widely used in the field of psychiatry to categorize and define psy-
chiatric disorders based on symptoms and functional impairment, 
providing a standardized framework for diagnosis and treatment. It 
was first published by the American Psychiatric Association in 1952 
as an initiative to develop practical, standardized diagnostic criteria, 
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and it has undergone several revisions since then reflecting advance-
ments in the understanding of mental health conditions (Surís, Hol-
liday, and North 2016). Nevertheless, these classifications, conceptu-
alized prior to modern neuroscience and based on observable signs 
and symptoms, lack consistent predictability for treatment response 
and may not fully encompass the fundamental underlying mecha-
nisms of dysfunction associated with a specific disorder (Insel et al. 
2010; Morris and Cuthbert 2012; Surís, Holliday, and North 2016). 
Furthermore, psychiatric disorders often co-occur, which is attribut-
ed to symptom heterogeneity within diagnoses and symptom overlap 
between diagnoses (Taylor et al. 2023), paving the way for a transdi-
agnostic approach.

TRADITIONAL TREATMENT APPROACHES

Traditionally, treatment decisions have relied on a ‘diagnosis-in-
formed one-size-fits-all’ approach, involving the prescription of stan-
dardized medications and the application of established therapeutic 
techniques, often following a ‘stepped care’ model (Arns et al. 2022). 
In stepped care, psychiatric patients undergo interventions matched 
to their needs, starting with low-intensity, low-cost and easily acces-
sible treatments with fewest side effects, and progressing to more 
specialized, higher-intensity interventions with generally higher side 
effect profiles (Van Straten et al. 2010). While this model, like the 
DSM-5, provides a structured framework, it may not adequately ad-
dress the heterogeneity and complex nature of mental health condi-
tions, potentially leading to suboptimal outcomes. 
For major depressive disorder (MDD), also known as depression, 
there is only limited evidence to suggest that stepped care should 
be the dominant treatment model (Firth, Barkham, and Kellett 2015; 
Van Straten et al. 2014). Moreover, under the stepped care model, 
remission rates for depression stand at around 30% to 40% following 
the initial treatment attempt, gradually decreasing with each sub-
sequent attempt, and approximately one-third does not achieve re-
mission even after four sequential treatment steps (Rush et al. 2006). 
Thus, there is a pressing need to enhance remission rates in depres-
sion.
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TRANSDIAGNOSTIC PSYCHIATRY

Transdiagnostic approaches in psychiatry focus on common underly-
ing factors and processes that are shared across different psychiatric 
conditions, rather than exclusively adhering to the categories and 
boundaries set by conventional classification systems. This approach 
has potential benefits, such as simplifying treatment protocols, de-
veloping interventions that are effective across a range of psychiatric 
disorders, reducing overlap in therapeutic techniques, and promot-
ing a more unified understanding of psychiatric disorders (Barlow 
et al. 2017). Therefore, this thesis aims to explore the feasibility of 
implementing a transdiagnostic approach in clinical practice, with a 
focus on uncovering common underlying factors or transdiagnostic 
markers that are associated with treatment outcomes in psychiatry.

MDD AND ADHD: AN OVERVIEW

This thesis focuses primarily on MDD, with a secondary emphasis 
on attention deficit/hyperactivity disorder (ADHD). Hence, a brief 
overview of these psychiatric conditions follows.

MAJOR DEPRESSIVE DISORDER

MDD is a common psychiatric disorder characterized by a multi-
faceted origin, typically conceptualized through a biopsychosocial 
framework that recognizes the significance of various biological, 
psychological, and social factors as key contributors to the disor-
der (Freedman 1995). The model contributes to the understanding 
of the heterogenous clinical presentation and symptomatology of 
depression (Rush 2007). However, according to the DSM-5 (APA 
2013), MDD is characterized by the presence of at least five out of 
nine symptoms during the same two-week period, representing a 
change from previous functioning. These symptoms include at least 
depressed mood most of the day, nearly every day and/or a markedly 
diminished interest or pleasure in all, or almost all, activities. Treat-
ment options include, among others, psychotherapy, pharmacother-
apy and transcranial magnetic stimulation (TMS). TMS is a noninva-
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sive treatment that involves the application of a magnetic field that 
passes through the scalp and skull, to electrically stimulate neurons 
in the underlying human cerebral cortex, beneath the coil (Wasser-
mann and Lisanby 2001). While single pulses of TMS result in com-
plex but brief responses, repeated pulses can induce more sustained 
effects on brain activity, potentially leading to lasting modifications 
in cortical excitability (Ridding and Rothwell 2007).

ATTENTION DEFICIT/HYPERACTIVITY DISORDER

ADHD is a common psychiatric disorder that often co-occurs with 
other psychiatric conditions such as depressive disorder (Choi et al. 
2022). ADHD is characterized by a persistent pattern of inattention 
and/or hyperactivity-impulsivity that interferes with daily function-
ing or development. Unlike MDD, it is a neurodevelopmental dis-
order with childhood onset that may change in manifestation with 
development from preschool through adult life (Zuddas et al. 2000). 
To meet ADHD DSM-5 criteria, sufficient symptoms must be present 
before the age of 12, and they must cause significant impairment in 
functioning. It is estimated that the prevalence of ADHD is around 
5% in children and adolescents, with a significant portion continu-
ing to experience symptoms into adulthood (Polanczyk et al. 2007). 
ADHD can be treated through different approaches, including phar-
macological interventions like psychostimulants (e.g. methylpheni-
date), as well as behavioral strategies involving various psychosocial 
interventions (Zuddas et al. 2000). 
Although impulsivity is recognized as a symptom of ADHD, a study 
conducted by Crips & Grant revealed that a wide range of psychiatric 
conditions exhibit heightened impulsivity (Crisp and Grant 2024). 
This suggests impulsivity could signify a shared process across dif-
ferent psychiatric disorders, evidenced by the high co-occurrence of 
ADHD and other conditions like personality disorder and substance 
use disorder (Trull et al. 2000; Bornovalova et al. 2005; Weiner, Per-
roud, and Weibel 2019; Katzman et al. 2017). These findings hint at 
the benefit of considering impulsivity as a transdiagnostic factor 
applicable to a wide spectrum of psychiatric conditions (Crisp and 
Grant 2024; Koudys et al. 2023). 
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CRITIQUE OF SUBJECTIVE ASSESSMENT TOOLS 

Self-reported or clinician-administered surveys, like the Hamilton Rat-
ing Scale for Depression (HAM-D), are tools for assessing the severity 
at baseline and progression of symptoms, monitoring treatment prog-
ress, and providing supplementary information for diagnostic purpos-
es. Drawbacks of such questionnaires include their subjective nature 
and the possibility of response bias, meaning that individuals provide 
inaccurate or misleading responses to questions, which can stem from 
various reasons, like social desirability (answering to appear socially 
acceptable) (Furnham 1986). In the International Study to Predict Op-
timized Treatment for Depression (iSPOT-D), for example, there was 
only a 59% agreement between the HAM-D and self-rated Quick In-
ventory of Depressive Symptomatology (QIDS) for remission (defined 
as HAM-D score ≤ 7 or QIDS score ≤ 5). 
The HAM-D, which has long been considered the gold standard se-
verity rating questionnaire for MDD, has a poor interrater and retest 
reliability on item level and assesses a concept of depression that only 
partially aligns with the operationalization of depression outlined in 
the DSM-5 (Bagby et al. 2004). Furthermore, some studies have indicat-
ed that the alignment between neurobiology and (subjective) psycho-
logical measures is limited (Krepel et al. 2019; Van der Vinne et al. 2017; 
Saveanu et al. 2015). Therefore, we adopted biological (first two studies) 
and neuropsychological measures (last study) in this thesis, to facilitate 
a shift away from relying solely on subjective assessments prone to bias, 
toward utilizing objective data less susceptible to individual interpreta-
tion for prognostic purposes.

ROLE OF GENETICS IN AS OBJECTIVE MARKER GUIDING 
PSYCHIATRIC TREATMENT 

Genetic liability is an area of research interest in biomarker-guided psy-
chiatric treatment, where objective genetic information is utilized to 
choose the most effective treatment. Given the highly polygenic nature 
of many psychiatric disorders, such as MDD and ADHD, no single ge-
netic variant has reliable predictive capacities (Kember et al. 2021). On 
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the other hand, specific genetic variants are associated with a range 
of psychiatric disorders (Smoller et al. 2013). Many different common 
genetic variations, distributed throughout an individual’s genome, 
have been associated with a specific trait or disease by multiple ge-
nome-wide association studies (GWAS) (Uffelmann et al. 2021). These 
variants can be combined to calculate an individual score that assess 
the overall genetic loading for a specific trait or disease; a polygenic risk 
score (PRS) (Lewis and Vassos 2020). Calculating the PRS (or polygenic 
score, PGS) involves a weighted summing of the number of trait-associ-
ated alleles, carried by an individual at each variant. Utilizing polygenic 
scores allows for predicting individual traits or the predisposition to a 
particular disease, independent of environmental influences. 
However, a review by Wray et al. concluded that, in clinical practice, 
PRS/PGS on their own have limitations in accurately predicting future 
diagnoses and treatment outcome of common complex conditions 
(Wray et al. 2021). Nevertheless, while polygenic scores fall short of 
yielding definitive predictions, they could offer support as adjuncts to 
other predictive methodologies, potentially aiding in stratification and 
guiding clinical decision-making. 
Pharmacogenomic studies have focused on genetic biomarkers of anti-
depressant treatment response in MDD, resulting in a PRS (or PGS) of 
antidepressant response (PRS-AR) (Pain et al. 2020). The usefulness of 
PRS-AR was validated by Lin et al. in an independent dataset that was 
not part of the initial GWAS (Lin et al. 2022). In the first two studies 
included in this thesis (chapter 2 and 3), we have used the PRS-AR as an 
intermediate step for the selection of brain networks that likely have a 
biological basis.

TRANSITING TO PRECISION PSYCHIATRY THROUGH 
STRATIFIED PSYCHIATRY 

In recent years, there has been a growing recognition of the need for a 
more nuanced understanding of psychiatric disorders in order to pro-
vide more tailored and personalized therapeutic approaches and inter-
ventions, acknowledging the unique characteristics and needs of each 
individual.
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CONCEPT OF PERSONALIZED MEDICINE

Personalized medicine, also known as precision psychiatry, aims to im-
prove the diagnosis and treatment of disorders by employing biomark-
ers that enable effectiveness in the initial treatment phase (Vieta 2015). 
Those biomarkers should accurately represent heterogenous groups, 
taking into account the interindividual variance. In this thesis, large 
and heterogenous cohorts of psychiatric patients were employed to un-
cover potential biomarkers. The first study (chapter 2) utilized a dataset 
comprising more than 1,000 adult patients, predominantly in-hospi-
tal, diagnosed with a variety of psychiatric disorders (including MDD, 
psychotic disorder, and substance use disorder, among others). In the 
last two studies (chapter 3 and 4), we analyzed a dataset containing 
over 4,000 subjects diagnosed with a range of psychiatric conditions 
(including MDD, ADHD, and obsessive-compulsive disorder, among 
others), outpatient and spanning various clinical stages of life.

STRATIFIED APPROACH AS A STEP-UP TO PRECISION PSYCHIATRY

Despite the increasing attention to precision psychiatry, the man-
ner in which clinicians diagnose and manage psychiatric disorders – 
guided by average efficacy, side-effect rates and personal experience – 
has remained largely unchanged for decades (Arns et al. 2022). While 
recent research has focused on biomarkers and precision psychiatry, 
so called ‘stratified psychiatry’ could be a more practical alternative 
for individuals with mental health conditions (Arns, Olbrich, and 
Sack 2023). Stratified psychiatry involves subgrouping patients with 
comparable biomarker profiles to improve the likelihood of a clinical 
response or remission to established treatments, as outlined by Arns 
et al. (Arns et al. 2022). Thus, it does not claim to provide the optimal 
treatment for each person, but rather is a pivotal step towards preci-
sion psychiatry (figure 1). 
Patients can be stratified based on biological, genetic, and clinical 
factors, in line with the postulated biopsychosocial model that un-
derlies the heterogeneity of MDD. It is evident that a single marker 
fulfilling all criteria for aiding diagnosis and predicting treatment 
across different neuropsychiatric disorders does not exist. Achieving 
this goal of precision psychiatry will likely involve combining a range 
of biomarkers, and initiating biomarker-guided treatment decisions, 
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which in turn may result in higher remission rates compared to 
treatment as usual (Olbrich, Dinteren, and Arns 2016). Therefore, our 
thesis focuses on stratifying psychiatric patients based on objective, 
biologically grounded markers to offer optimized treatment, aiming 
to increase the likelihood of remission.

Figure 1. The infographic compares the current ‘diagnosis-informed one-size-fits-all’ ap-
proach (above) with the prognostic models of stratified psychiatry (opposite page, top) and 
precision psychiatry (opposite page, bottom). Precision psychiatry entails treating psychiatric 
patients according to a personalized profile that is based on objective markers (including 
neuroimaging and genetics, among others), to address the unique characteristics of each 
patient and optimize clinical outcomes. Stratified psychiatry involves subtyping patients 
with similar biomarker profiles to improve the likelihood of clinical response to established 
treatments.

one-size-fits-all psychiatry - diagnostic approach, no biomarkers

adverse
event

no benefit benefit
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RESEARCH DOMAIN CRITERIA (RDOC) FRAMEWORK

The National Institute of Mental Health (NIMH) has developed the 
Research Domain Criteria (RDoC), offering a framework that aims 
to advance the understanding of mental health by emphasizing a 
dimensional and neuroscientific approach, encouraging scientists 
to explore the underlying genetic, biological and psychological fac-
tors underlying behavior, across multiple domains (Insel et al. 2010; 
Morris and Cuthbert 2012). The statement goal of the NIMH is to 
develop, for research purposes and eventually for clinical use, new 
ways of classifying mental conditions based on dimensions of ob-
servable behavior and neurobiological measures (Cuthbert and Insel 
2013). These dimensions embody constructs that symbolize evolving 
knowledge related to brain organization and functioning, shaped 
by ongoing research progress (Morris and Cuthbert 2012; Cuthbert 
and Insel 2013). Dimensions are further categorized under five over-
arching domains of function (for example the arousal/regulatory 
domain), which reflect a conceptual typology. By incorporating the 
RDoC framework, there is potential to redefine the classification of 
psychiatric disorders, which could be based on objective biological 
or neuropsychological measurements, as well as observable behav-
ior dimensions. Such reclassification may pave the way for improved 
treatment outcomes through a stratified or more personalized ap-
proach. Ultimately, this approach reflects our evolving understand-
ing of brain organization and functioning. We harnessed the RDoC 
approach to delve deeper into the regulatory systems, with further 
elaboration to follow.

UNCOVERING BIOMARKERS WITH NEUROIMAGING  
TECHNIQUES 

Neuroimaging techniques, including magnetic resonance imaging 
(MRI) and electroencephalography (EEG) are methods to gain more 
insights in brain organization and functioning, and have proven to 
be valuable methods for the identification of biological predictors of 
TMS for depression (Klooster et al. 2023). Moreover, structural and 
functional MRI shows potential in improving treatment outcomes in 
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MDD for other treatment modalities (e.g. pharmacotherapy), as out-
lined in a review by Fonseka et al. (Fonseka, MacQueen, and Kennedy 
2018). A study utilizing functional MRI (fMRI) on a large multisite 
sample employed a data-driven data-reduction technique distin-
guishing subtypes of depression beyond existing diagnostic bound-
aries and exhibiting predictive capabilities for TMS responsiveness 
(Drysdale et al. 2017). We embraced a data-driven data-reduction 
technique in this thesis, although MRI was not employed as part of 
that technique.

EEG AS ALTERNATIVE TO MRI 

An alternative approach to MRI for examining brain function and 
subtyping psychiatric disorders, based on extensive data from large 
samples, is by using resting-state EEG (figure 2A-C). This is a non-in-
vasive neuroimaging technique that provides insights into the elec-
trical human brain activity (Berger 1929). EEG has several advantages 
compared to MRI, as it is more cost-efficient and broadly available, 
with a high temporal resolution, albeit low spatial resolution. EEG 
uses a set of electrodes strategically placed along the scalp, for ex-
ample according the International 10-20 system (Klem et al. 1999). 
A spontaneous EEG represents the postsynaptic potentials of (thou-
sands to millions) cortical pyramidal neurons firing in synchrony, 
making the signal large enough to be conducted through the skull 
and recorded at the scalp (Schomer and Silva 2011). 
By capturing the fluctuations in voltage over time, EEG allows re-
searchers and clinicians to observe and analyze brain wave patterns. 
EEG signals are often categorized into distinct frequency bands, such 
as delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta (14-30 Hz), 
and gamma (above 30 Hz) (Silva 2013), each associated with specific 
cognitive and sensory processes (Başar et al. 2001). The alpha rhythm, 
for example, occurs during relaxed wakefulness and is particularly 
prominent when the eyes are closed, mainly over the parieto-occip-
ital cortex (Silva 1991). In this thesis, we utilized EEG to identify ob-
jectively measurable transdiagnostic markers for treatment predic-
tion and stratification purposes.
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Figure 2. Electroencephalography (EEG) is a non-invasive technique used to record electrical 
brain activity by placing electrodes on the scalp, which detect signals generated by neurons 
firing in the brain (A). These recordings appear as brain waves (B) categorized into different 
frequency bands (delta, theta, alpha, beta, and gamma waves), depicted in the time domain 
(C). Through power spectral analysis, EEG data is transformed into the frequency domain, 
revealing power distribution across frequency bands. Source localization analysis identifies 
specific brain regions responsible for generating EEG signals (D). This process reconstructs 
neural sources in three dimensions, offering insights into the spatial distribution of brain 
activity.

POTENTIAL OF EEG IN STRATIFIED PSYCHIATRY

In clinical settings, EEG has since long served as a valuable diagnostic 
tool to assess and monitor various neurological conditions, like epi-
lepsy (Gibbs, Davis, and Lennox 1935). EEG plays an emerging role for 
understanding how EEG signatures or patterns correlate with specif-
ic psychiatric disorders and holds promise for enhancing diagnostic 
precision and treatment response in psychiatry (Hughes and John 
1999). 
For MDD and ADHD, several EEG parameters were found to be of 
discriminative and predictive value: specific patterns or abnormali-
ties in the EEG are associated with treatment outcomes in a manner 
that depends on factors (e.g. sex/gender or the specific treatment 
used) (Arns, Gordon, and Boutros 2017; Arns et al. 2016; Olbrich and 
Arns 2013; Wu et al. 2020; Roelofs et al. 2020). These include, among 
others, EEG vigilance-based markers and several quantitative EEG 
markers, especially within the alpha and theta range, like frontal al-
pha asymmetry (FAA) (Olbrich, Dinteren, and Arns 2016; Olbrich and 
Arns 2013) and individual alpha peak frequency (iAPF) (Voetterl et al. 
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2023; Voetterl et al. 2022). FAA has been thoroughly investigated as 
a potential prognostic biomarker in MDD, and is defined by greater 
alpha power over left than right frontal region, which is indicative 
of relatively less left frontal activation and greater right frontal acti-
vation (Bruder et al. 1997). It is a stable trait that predicts treatment 
response irrespective of moment of measurement and use of medi-
cation, and promising to optimize MDD treatments (Van der Vinne 
et al. 2019). 
Nevertheless, while some EEG markers show promise for clinical 
applications, they have not been implemented in clinical settings to 
date; there is a need for replication and validation in out-of-sam-
ple scenarios (Widge et al. 2019). However, the iAPF, which refers to 
the dominant frequency of alpha oscillations in an individual (Hae-
gens et al. 2014), is recently replicated and validated by Voetterl et al. 
(Voetterl et al. 2023), and ready to be implemented in clinical practice 
as a transdiagnostic treatment stratification EEG biomarker that can 
successfully assign patient subgroups to various ADHD and MDD 
treatments.

LORETA: UNLOCKING BRAIN NETWORKS FOR TREATMENT 
PREDICTION 

Although EEG is a promising neuroimaging technique for clinical ap-
plications, fMRI is the prevailing technique for functional imaging of 
the human brain. This imaging method measures and maps brain ac-
tivity by detecting changes in blood flow and oxygenation, producing 
three-dimensional (3D) images (Turner et al. 1998). EEG lacks adequate 
information regarding the 3D distribution of electric neuronal activity; 
it has low spatial resolution. The process of reconstructing the location 
and distribution of electric potentials based on EEG measurements is 
termed ‘inverse problem’ (Jatoi et al. 2014). Many possible solutions of 
this problem exist, and low-resolution brain electromagnetic tomogra-
phy (LORETA) is one of them (figure 2D). 
LORETA is an often used and essential tool in this thesis. It is a func-
tional imaging method that uses EEG measurements for estimating 
the cortical source distribution of electric neuronal activity by a lin-
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ear inverse solution method that identifies maximum synchroniza-
tion in orientation and strength among neighboring neuronal popu-
lations (Roberto D. Pascual-Marqui et al. 2011; R. D. Pascual-Marqui 
et al. 2002). It models the cortex as a set of volume elements (voxels) 
within a digitized atlas, yielding a 3D depiction of electric neuronal 
activity across specified frequency bands. The LORETA method has 
undergone prior utilization and validation with human data, and its 
most recent version, called exact LORETA (eLORETA), has an ability 
to achieve correct localization even when structured noise is present 
(Aoki et al. 2015). Thus, computations by eLORETA convert sensor 
EEG data into spectral density 3D images within a solution space 
comprising 6239 voxels.

FUNCTIONAL BRAIN NETWORKS DERIVED THROUGH LORETA

Through the application of eLORETA, one can acquire independent, 
spectral-spatial components (or functional networks) via indepen-
dent component analysis (ICA) applied to the voxel domain and 
across frequencies. ICA (or functional ICA; fICA) is a computational 
method that aims to find a set of independent signals (components) 
that, when linearly combined, constitute the observed data (Comon 
1994). The fundamental assumption in ICA is that the observed sig-
nals result from mixtures of statistically independent source signals. 
The technique works by maximizing the statistical independence 
among the estimated components. Thus, this represents a data-driv-
en, data-reduction technique, as it minimizes the input data without 
losing information. 
The functional networks derived from eLORETA represent sets of 
brain regions that consistently and simultaneously activate or deac-
tivate within and across a specified frequency band. Consequently, 
independent cross-frequency spectral-spatial functional networks 
are established. Using this approach, a study by Gerrits et al. success-
fully identified both the default mode network (active at rest) and 
task-positive network (active during goal-directed tasks) in a large 
sample, that was also out-of-sample validated in an ADHD sample 
(Gerrits et al. 2019). In this thesis, the eLORETA-fICA method al-
lowed us to compute various functional brain networks from EEG 
data. These networks were tested for their potential to serve as bio-
markers with predictive capabilities for treatment outcomes. 
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INTEGRATING FUNCTIONAL BRAIN NETWORKS WITH GENETICS

In the first two studies (chapter 2 and 3) of this thesis, we embraced 
an integrative approach by combining polygenic factors associated 
with treatment (non)response (assessable through PRS) with neuro-
biological factors represented by EEG signatures. This comprehen-
sive strategy appears promising for effectively predicting therapeu-
tic outcomes. This novel strategy we employed involves utilizing 
PRS-AR to guide the selection of functional brain networks for sub-
sequent prediction of antidepressant treatment response in MDD. 
Thus, a biologically plausible network linked to a polygenic liability 
for antidepressant response is chosen and subsequently validated in 
an independent dataset consisting of patients with MDD that receive 
a specific (evidence-based) treatment. The functional network may 
be useful as a clinical tool to stratify patients to antidepressant treat-
ments, thereby enhancing chances of initial remission, thus limiting 
the relative inefficiency of the current stepped care approach and al-
leviate the burden and duration of the disease.

TRANSDIAGNOSTIC EEG MARKER FOR HYPOAROUSAL 

Beta spindles entail synchronized EEG activity within the beta frequen-
cy range, centered around a specific frequency. Spindling excessive beta 
(SEB) in particular is characterized by fast beta waves with a “spindle 
morphology with an anterior emphasis” (Johnstone, Gunkelman, and 
Lunt 2005). The identification of this EEG signature in the frontocen-
tral lobes, relies on visual examination. 
Spindle activity in the alpha and slow beta frequency range is best 
studied and commonly appears during superficial and non-rapid eye 
movement stages of sleep (known as sleep spindles) and under certain 
medicines, such as barbiturates (Johnson et al. 2012; Silva 1991). While 
sleep spindles are linked to learning and memory (Johnson et al. 2012), 
the function of SEB is not clear. Beta activity is generally associated 
with hyperarousal and alertness, and increased levels of beta activity 
are found in patients experiencing insomnia (Perlis et al. 2001). Fur-
thermore, beta activity rarely occurs in children and adolescents and 
should not exceed 25 µV in amplitude (Clarke et al. 2001c). 
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SEB AS A TRANSDIAGNOSTIC MARKER FOR HYPOAROUSAL

Since sleep spindles occur during drowsiness and sleep, SEB might 
be indicative of hypoarousal. In this context, SEB has been explored 
as a potential transdiagnostic marker within the arousal/regulatory 
domain of the RDoC, and it is associated with impulse control (Arns, 
Swatzyna, et al. 2015; Krepel et al. 2021). 
Various psychiatric disorders manifest heightened impulsivity, high-
lighting the relevance of conceptualizing impulse control as a trans-
diagnostic factor across a spectrum of psychiatric conditions (Crisp 
and Grant 2024). Within the ADHD population, where impulsivity 
stands as one of the key symptoms according to the DSM-5, preva-
lence rates of (spindling) excess beta (described as beta levels exceed-
ing two standard deviations above the mean of the control group, or 
three within each subgroup, depending upon the study) in the EEG 
range from 13% to 20% (Clarke et al. 2001c; Chabot and Serfontein 
1996; Clarke et al. 1998; 2001b). Notably, research conducted by Arns 
et al. (Arns et al. 2008) revealed comparable prevalence of frontocen-
tral beta spindles between individuals with ADHD and healthy con-
trols. Moreover, results from a study by Clarke et al. indicated that 
ADHD children exhibiting excess beta activity are not hyperaroused 
(Clarke et al. 2013). These findings suggest that the presence of excess 
beta or beta spindles can be regarded as a neurophysiological ‘nor-
mal variant’ that is not associated with hyperarousal, but represents 
a distinct subgroup within the ADHD population that responds well 
to stimulant medication (Chabot et al. 1999; Clarke et al. 2003). In 
this thesis, we investigated the ability of SEB to predict treatment 
outcomes in ADHD, as well as MDD, considering that impulsivity 
occurs in various psychiatric conditions.

APPLICATIONS OF DEEP LEARNING

Artificial intelligence, particularly the swiftly advancing field of deep 
learning, stands out as a promising novel approach towards person-
alized and improved treatment as it can help predict disease and 
treatment outcomes. Deep learning, a subfield of machine learn-
ing that concentrates on artificial neural networks, especially deep 
neural networks, enables computer models with multiple layers to 
comprehend complex and large data at various levels of abstraction 
(LeCun, Bengio, and Hinton 2015). A recent study from Van Putten 
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et al. (Putten, Olbrich, and Arns 2018), which has been replicated 
(Bučková et al. 2020), demonstrated that a deep neural network can 
accurately predict sex from EEG data. This finding reveals that brain 
rhythms exhibit sex-specific patterns and underscores the capability 
of deep neural networks to identify features in spatiotemporal data 
that might go unnoticed through visual assessment. Therefore, deep 
learning seems valuable in automating EEG biomarkers reliant on 
visual inspection. Since SEB is an EEG signature that is dependent on 
visual inspection and therefore subjective, we trained a convolution-
al neural network (a type of artificial neural network) deep learning 
model to classify SEB in the EEGs of nearly 200 subjects, which were 
annotated visually by an EEG expert.

TRIANGULAR RELATIONSHIP BETWEEN SLEEP, SEB AND IMPULSE CONTROL

A study examining the relation between sleep maintenance, SEB and 
impulse control hypothesized that frontal SEB could be considered 
a transdiagnostic state marker indicating impulse control problems 
stemming from sleep-related problems (Arns, Swatzyna, et al. 2015). 
Links between sleep and impulsivity have been studied. The regu-
lation of sleep, arousal, affect, and attention overlaps, and effects of 
sleep deprivation encompass changes at the level of prefrontal cortex 
(PFC) integration across these regulatory systems (Dahl 1996). Poor 
sleep quality is thus related to cognitive and emotional impairments, 
like diminished attentional and behavioral control (as observed in 
ADHD), and regulation of emotions (as observed in depression) 
(Dahl 1996; Harrison and Horne 2000). Moreover, the association 
between sleep and impulsive behavior seems bidirectional (Bauduc-
co, Salihovic, and Boersma 2019). Therefore, we delved into the tri-
angular relationship of sleep maintenance problems in relation to 
impulse control on one hand and SEB on the other. We investigated 
the potential of SEB as transdiagnostic marker for impulsivity or hy-
poarousal, as well as its capacity to predict treatment outcomes. 
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THESIS CHAPTERS OVERVIEW 

In the second chapter, a proof-of-concept study is described. Here, 
we demonstrate a polygenic-informed EEG data-driven, data-re-
duction approach to predict treatment outcome in MDD. To that 
end, we conducted eLORETA-fICA in a large dataset of over 1,000 
patients, producing functional brain networks. We used PRS-AR to 
guide the selection of functional brain networks for subsequent re-
sponse prediction, thus combining genetics with neurophysiology 
approaches. In the third chapter, the follow-up study is presented 
that builds upon the previous one. Here, we demonstrate an analysis 
flow that was inspired by the previous study, aiming to identify a 
functional brain network capable of predicting remission to MDD 
treatments. The eLORETA-fICA was applied to a lifespan database 
consisting of more than 4,000 psychiatric patients, to better capture 
functional brain networks across the lifespan. The remainder of the 
study was of explorative and descriptive nature. In the fourth chapter 
we explored EEG frontal beta activity (frontocentral beta power and 
SEB classified using a deep learning algorithm) as a potential trans-
diagnostic biomarker linked to impulsivity and sleep problems, both 
objectively measured. Furthermore, we demonstrate that SEB classi-
fied by deep learning, has both diagnostic and predictive capabilities. 
In summary, the results underscore the significance of the RDoC ap-
proach in uncovering biomarkers within psychiatric research.
In conclusion, in this doctoral thesis we strive to pave the way for 
personalized psychiatry through stratified approaches to treatment. 
By integrating methodologies such as neuroimaging, genetics, and 
deep learning, we aim to transcend the limitations of traditional di-
agnostic frameworks and offer new insights that hold promise of rev-
olutionizing psychiatric care. 
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ABSTRACT

The treatment of major depressive disorder (MDD) is ham-
pered by low chances of treatment response in each treatment 
step, which is partly due to a lack of firmly established out-

come-predictive biomarkers. Here, we hypothesize that polygenic-in-
formed EEG signatures may help predict antidepressant treatment 
response. Using a polygenic-informed electroencephalography (EEG) 
data-driven, data-reduction approach, we identify a brain network in a 
large cohort (N = 1,123), and discover it is sex-specifically (male patients, 
N = 617) associated with polygenic risk score (PRS) of antidepressant 
response. Subsequently, we demonstrate in three independent data-
sets the utility of the network in predicting response to antidepressant 
medication (male, N = 232) as well as repetitive transcranial magnet-
ic stimulation (rTMS) and concurrent psychotherapy (male, N = 95). 
This network significantly improves a treatment response prediction 
model with age and baseline severity data (area under the curve, AUC 
= 0.623 for medication; AUC = 0.719 for rTMS). A predictive model for 
MDD patients, aimed at increasing the likelihood of being a responder 
to antidepressants or rTMS and concurrent psychotherapy based on 
only this network, yields a positive predictive value (PPV) of 69% for 
medication and 77% for rTMS. Finally, blinded out-of-sample valida-
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tion of the network as predictor for psychotherapy response in another 
independent dataset (male, N = 50) results in a within-subsample re-
sponse rate of 50% (improvement of 56%). Overall, the findings provide 
a first proof-of-concept of a combined genetic and neurophysiological 
approach in the search for clinically-relevant biomarkers in psychiat-
ric disorders, and should encourage researchers to incorporate genetic 
information, such as PRS, in their search for clinically relevant neuro-
imaging biomarkers.

INTRODUCTION 
 
Major depressive disorder (MDD) is a common psychiatric disorder 
with a complex etiology that is generally explained from a biopsycho-
social model, in which multiple biological, psychological, and social 
factors are all considered important contributors (Amare, Schubert, 
and Baune 2017). Furthermore, genetic risk factors of MDD overlap 
with other psychiatric disorders and specific genetic variants are in 
turn associated with a range of psychiatric disorders (Smoller et al. 
2013). It is assumed that the multifactorial model for MDD (partly) 
underlies its heterogeneous symptomatology and variable treatment 
efficacy (Belmaker and Agam 2008; Rush 2007). In line with the 
biological heterogeneity of MDD that in turn may be related to this 
variable treatment outcome, pharmacogenomic studies have focused 
on genetic biomarkers of antidepressant treatment response in MDD. 
Genome wide association studies (GWASs) have identified genetic 
variants associated with antidepressant efficacy and SNP-based heri-
tability of antidepressant response significantly differs from zero (Pain 
et al. 2020), but clinically-relevant and converging loci have remained 
elusive (Ising et al. 2009; Garriock et al. 2010; Li et al. 2020; Uher et 
al. 2010; Fabbri et al. 2018; Ji et al. 2013; Li et al. 2016; Tansey et al. 
2012). Thus, antidepressant treatment outcome is likely a complex 
trait and explained by several loci of small effect (Hodgson et al. 2012), 
with recent evidence indeed suggesting that antidepressant response 
is polygenic (Pain et al. 2020). Consequently, a polygenic instead 
of single gene or locus approach, by calculation of the individual’s 
polygenic risk score (PRS), seems valuable to associate genetic risk 
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with treatment (non)response (Fabbri et al. 2020). At present howev-
er, evidence for reliable out-of-sample prediction of MDD treatment 
response is limited (García-Gonzáleza et al. 2017; Ward et al. 2018; Foo 
et al. 2019; Li et al. 2020; Pain et al. 2020; Fanelli et al. 2020; 2022). A 
proposed strategy to effectively predict therapeutic outcomes for clin-
ically prognostic purposes, is to integrate PRS with other predictors, 
such as neuroimaging and clinical characteristics (Amare, Schubert, 
and Baune 2017). 
Electroencephalography (EEG) is a non-invasive neuroimaging tech-
nique to quantitatively analyze oscillatory brain activity of neurons 
with high temporal resolution (Silva 2013). EEG biomarker research 
for treatment prediction in MDD has shown that certain EEG pat-
terns or abnormalities are differentially associated with drug-specific 
or drug-class specific antidepressant treatment effects (Arns, Gordon, 
and Boutros 2017; Arns et al. 2016; Olbrich and Arns 2013) as well as 
rTMS outcome (Arns et al. 2014; Erguzel et al. 2014; Hasanzadeh, Mo-
hebbi, and Rostami 2019; Roelofs et al. 2020). Such studies have also 
demonstrated qualitative sex differences in topographic distribution of 
EEG activity and sex-specific predictors of treatment response of alpha 
asymmetry (Arns et al. 2016), EEG connectivity (Iseger et al. 2017) and 
event-related potentials (Dinteren et al. 2015). Until recently, consen-
sus was that the use of EEG for clinical decision making is not justified 
(Widge et al. 2019). However, two recent studies using machine-learn-
ing approaches applied to resting-state EEG features identified predic-
tive signatures for sertraline, a selective serotonin-reuptake inhibitor, 
that related differentially to rTMS response (Wu et al. 2020; Zhang et 
al. 2020). This finding is of clinical relevance as it suggests that EEG 
signatures may be useful as a clinical tool to stratify patients to one of 
two evidence-based antidepressant treatments (rTMS vs. antidepres-
sant medication), empowering initial treatment response rates (Michel 
and Pascual-Leone 2020).
Our primary aim was to demonstrate proof-of-principle for the use 
of a polygenic-informed EEG data-driven, data-reduction approach to 
predict treatment outcome in MDD. To that end, we conducted a func-
tional independent component analysis (fICA) using LORETA (Low 
Resolution Brain Electromagnetic Tomography), producing indepen-
dent spectral-spatial components (i.e. functional brain networks), in 
a large dataset. In a prior study, this fICA method was tested and vali-
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dated (Gerrits et al. 2019; Aoki et al. 2015) and demonstrated to reliably 
identify the default mode network (DMN) and task-positive network 
(TP) in a sample of 1,397 subjects, which was also replicated in an inde-
pendent ADHD sample (Gerrits et al. 2019). We used PRS-AR (Pain et 
al. 2020) to guide the selection of functional brain networks for subse-
quent response prediction, thus combining genetics with neurophysi-
ology approaches. The usefulness of PRS-AR was recently validated in 
an independent dataset of pharmacotherapy response, that was not in-
cluded in the original GWAS (Lin et al. 2022).  Here, we show one func-
tional network that is significantly associated with polygenic liability 
to antidepressant response in men. Then, in subsequent translational 
analyses, we demonstrate how this EEG signature is associated with 
response to antidepressant medication as well as rTMS and concurrent 
psychotherapy in male MDD patients in an independent dataset. Final-
ly, we analyzed the prediction accuracy of treatment response in male 
MDD patients based on the discovered EEG signature.

MATERIALS AND METHODS
PARTICIPANTS AND PRS CALCULATION, DATASET 1

The first dataset was used for functional independent component anal-
ysis (fICA). EEG recordings of participants were collected from Sep-
tember 2013 until September 2018 at Ziekenhuis Netwerk Antwerpen 
(ZNA), a large community hospital in Antwerp, Belgium. The study 
was approved by the Institutional Review Board of ZNA. We abided 
by the principles of the Declaration of Helsinki. A total of 1,195 adult 
participants – 1,132 psychiatric patients with various (predominantly 
mood, psychotic and/or substance use) disorders and 63 healthy con-
trols to obtain a heterogenous sample – were included and provided 
written informed consent. Exclusion criteria for all participants were 
age <18 years, inability to give informed consent for whatever reason, 
and restlessness that could interfere with the EEG. Healthy controls 
were defined as having no current psychiatric episode and never been 
treated by a mental health service. After preprocessing, the total sam-
ple for fICA consisted of 1,123 (1,061 patients and 62 healthy controls). 
We aimed to use the largest sample possible for a data-driven-data-re-
duction into fICA components that would be transdiagnostic and ex-
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plain most of the variance, rather the relying on a too narrow dataset 
of MDD patients only. In earlier work we also demonstrated this for 
Brainmarker-I. When we developed this Brainmarker on a large heter-
ogenous dataset, it translated better to a normative dataset, instead of 
the other way around (Voetterl et al. 2022).
Additionally, DNA was extracted from the 887 participants of the to-
tal sample providing written informed consent for genetic analyses. 
Standard stringent genotype and subject-level quality control (QC) 
and principal component analysis were carried out with PLINK 1.9 (S. 
Purcell et al. 2007) to obtain a genetic homogenous cohort, and PRSs 
were calculated as per standard procedures using PRSice2 (Choi and 
O’Reilly 2019). DNA QC and PRS calculation details, and references to 
the GWASs used for PRS generation can be found in Supplementary 
Materials and Methods.

PARTICIPANTS OF THE MEDICATION STUDY, DATASET 2

The second dataset used for translational purposes and the evaluation 
of treatment effects was an international multi-center, randomized, 
prospective open-label trial (phase-IV clinical trial): iSPOT-D sample 
(International Study to Predict Optimized Treatment in Depression). 
This study consisted of 1,008 patients diagnosed with non-psychotic 
MDD who were randomized to escitalopram, sertraline, or venlafax-
ine. All participants provided written informed consent and this study 
was approved by the institutional review boards at all of the partici-
pating sites and this trial was registered with ClinicalTrials.gov under 
id NCT00693849. At baseline and after 8 weeks of treatment patients 
filled in the Quick Inventory of Depressive Symptomatology (QIDS). 
Only data from participants who completed 8 weeks of randomized 
medication treatment (‘per protocol’ sample) were included. Details 
about this sample have been published elsewhere (Arns, Etkin, et al. 
2015; Arns et al. 2016).

PARTICIPANTS OF THE RTMS STUDY, DATASET 3

The third dataset was used for translational and discovery purposes 
and the evaluation of treatment effects. It consisted of 196 patients, 
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diagnosed with non-psychotic MDD or dysthymia and Beck Depres-
sion Inventory version 2 (BDI-II) score ≥ 14 at baseline, who under-
went protocolized rTMS treatment concurrent with psychotherapy. All 
participants provided written informed consent. Participants received 
high-frequency TMS (10 Hz left dorsolateral prefrontal cortex, DLPFC) 
or low-frequency TMS (1 Hz right DLPFC); a minority received both 1 
Hz and 10 Hz sequentially. All patients completed at least 10 sessions of 
treatment, and filled in the BDI-II at baseline and at the last session (on 
average session 21). Details about this sample are described elsewhere 
(Donse et al. 2017; Krepel et al. 2019).

PARTICIPANTS OF THE PSYCHOTHERAPY STUDY, DATASET 4

The third dataset, used to investigate if the EEG component was also 
predictive for psychotherapy without concurrent rTMS treatment, 
included patients diagnosed with non-psychotic MDD or dysthymia 
and BDI-II ≥ 14 at baseline who received any form of psychotherapy 
as monotherapy (N = 175). Of these patients, 94 underwent cognitive 
behavior therapy (CBT) and 81 underwent another form of psychother-
apy. BDI-II baseline was recorded at intake, and again at the end of 
psychotherapy treatment. All participants provided written informed 
consent.

EEG RECORDINGS AND PREPROCESSING

Resting-state eyes closed EEG recordings (see Supplementary Materials 
and Methods) were acquired from 65 channels of the Electrical Geode-
sics Incorporated (EGI; Magstim, UK) system (dataset 1) and from 26 
channels (10-20 electrode international system of the Neuroscan NuA-
mps (Compumedics, Australia; other datasets).
Subsequently, the following steps were taken in the EEG preprocess-
ing and artefact rejection procedure using Brain Vision Analyzer 2.0 
(Brain Products, Germany): 1) data filtering: 0.5-90 Hz (dataset 1) or 
0.3-100 Hz (dataset 2 and 3), and notch filter; 2) removal and spherical 
spline interpolation of noisy signals or flat lines; 3) electro-oculogra-
phy (EOG) correction, using a regression-based technique (Gratton, 
Coles, and Donchin 1983); 4) segmentation in 4-second epochs; and 
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4) artefact-rejection using an automatic procedure (criteria: maximal 
allowed difference of 150 µV peak-to-peak). This resulted in a minimum 
of one-minute data per subject.

LORETA-FICA MODEL

The EEG was used for estimating the cortical source distribution of 
electric neuronal activity by means of LORETA (free academic software 
available at https://www.uzh.ch/keyinst/loreta). This method weights 
minimum norm inverse solution, and localization inference is based 
on the standardized estimates of the current density (Roberto D. Pas-
cual-Marqui et al. 2011). 
The following analysis steps were performed using the collection of 
4-second artefact-free epochs obtained from dataset 1. In the first step, 
each EEG recording was transformed to the frequency domain, using 
the discrete Fourier transform. The cross-spectral matrices were ob-
tained for six frequency bands, defined as: delta (1.5-3.5 Hz), theta (4-
7.5 Hz), alpha (8-13 Hz), beta (14.5-30 Hz), low-gamma (31-47 Hz), and 
high-gamma (>70 Hz). Aiming to eliminate the notch bands used at 
different sites in the EU and US, the 48-69 Hz range was excluded. In 
the second step, from data of each cross-spectrum matrix, the spectral 
density was computed for each cortical voxel, sampled at 5 mm reso-
lution in a realistic head model, using the MNI152 template (Aoki et 
al. 2015). In the third step, the spectral-spatial data of all subjects was 
concatenated, and ICA (see Supplementary Materials and Methods) 
was performed on these data, aiming to identifying independent spec-
tral-spatial components (i.e. functional networks). This method was 
recently validated in Aoki et al. and Gerrits et al. and reliably identified 
DMN (default mode network) and TP (task-positive) networks (Aoki et 
al. 2015; Gerrits et al. 2019).

INDEPENDENT COMPONENTS

Each independent cross-frequency spectral-spatial functional network 
(fICA network or EEG component) represents sets of brain regions that 
are consistently activated or deactivated together within and across a 
given frequency band. The number of EEG components here was esti-
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mated from a dimensionality measure related to Wackermann’s Omega 
Complexity (Wackermann 1996). 
To visualize the functional networks (i.e. correlation of brain regions 
that are consistently activated or deactivated), a threshold at 3 z-val-
ues was set. Individual scores per fICA network were obtained for each 
subject, corresponding to the strength of that network for a given in-
dividual subject. 
The functional networks that were established based on the first data-
set, were prospectively applied to dataset 2 and 3. Likewise, for each 
subject in each dataset, EEG component scores were obtained per net-
work. These were used in the statistical analysis.

OUTCOME MEASURES 

For component selection (discovery, figure 1), the independent EEG 
components were regressed on PRS-AR (dataset 1, see section ‘Statis-
tics’ below). For the prediction analysis, first we focused on dimen-
sional improvement of depressive symptoms, and then on categorical 
improvement (response, defined as ≥ 50% reduction of baseline score) 
to confirm the robustness of previous findings (translation, figure 1). 
Outcomes were based on the QIDS or BDI-II (dataset 2 and 3).

STATISTICS 

SPSS version 27 was used for statistical analyses. Effects sizes (ES) of 
significant main effects are reported as explained variance (R2) and/or 
standardized beta () for continuous measures or as Cohen’s d (d) for 
binary measures. Two-sided tests were performed for statistical signif-
icance testing.
In order to accommodate potential sex-specific interaction effects, sex 
was included as main factor, or – in case the analysis could not accom-
modate sex as main factor – women and men were analyzed separate-
ly, rather than handled as covariate since covariation can only resolve 
quantitative (not qualitative) sex differences. Previous iSPOT-D studies 
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reported sex-specific predictors of treatment outcome (Dinteren et al. 
2015; Arns, Etkin, et al. 2015; Arns et al. 2016; Iseger et al. 2017), so this 
would enable us to identify potential biomarkers. If no sex interaction 
was found, or the effect for both sexes was in the same direction (and 
for PRS analysis at p<0.01), analyses were performed on men and wom-
en combined, otherwise separately.
The analysis procedure that was performed in this study is visualized 
in figure 1. First, a discovery analysis examined if there was an associ-
ation between one or more fICA components and PRS-AR (dataset 1). 
To that end, a linear regression analysis, controlling for age and the 
first five genetic ancestry principal components (PCs), was run between 
individual EEG component strength (measured by individual scores 
that present how active the network is in an individual) and 11 PRS-AR 
p-value thresholds (PT = 5.0×10-6 to PT = 1) in order to choose the opti-
mal PT, which is unknown a priori (Choi, Mak, and O’Reilly 2020). The 
significance level was conservatively corrected for multiple outcomes 
and sex-specific subgroup analysis:  = 0.05/(29 [EEG components] × 
2 [male vs female participants]) = 0.00086. The EEG component that 
showed significant associations with PRS-AR was selected for subse-
quent analyses.
Second, a translational analysis was performed (dataset 2 and 3) to ex-
amine if the selected EEG component was predictive of treatment out-
come. The significance level for these translational follow-up analyses 
was set at conventional = 0.05 as these analyses were intended for 
translation of the findings in the discovery analysis. We investigated 
possible associations between individual EEG component strenght and 
absolute changes in BDI-II and QIDS score. The absolute change (∆) 
was defined as the symptom severity score difference between base-
line and treatment completion. Therefore, ∆BDI-II and ∆QIDS were 
regressed on the individuals EEG component strength, adding age as 
covariate. Factorial ANCOVAs were run to investigate if the individ-
ual EEG component scores were significantly different in responsive 
patients compared to nonresponders. Response and sex were added 
as fixed factors; age was added as covariate in all models. For both cat-
egorical as well as continuous outcome analyses an additional analysis 
with baseline severity score was done.
Subsequently, to assess the predictive value of the EEG component, 
a discriminant analysis on treatment outcome was performed. Prior 
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studies had already tested several psychological (personality, anxiety 
etc.), demographic and behavioral measures and their ability to predict 
remission or response in these samples, and failed to find robust and 
clinically relevant predictors (Krepel et al. 2019; Saveanu et al. 2015; 
Arns et al. 2016). The basic predictive model consisted of age and base-
line severity. Then we tested whether the model performance improved 
when the EEG component, detected in the discovery analysis, was add-
ed as predictor (‘improved model’). The positive predictive value (PPV) 
was calculated for the improved model. Also, a receiver operating char-
acteristic (ROC) curve was plotted.
The optimal network score cut-off points for medication and rTMS 
during psychotherapy were determined by calculating the maximum 
Youden Index (J), which measures the accuracy of a dichotomous di-
agnostic test, for the prediction of response to increase effectiveness 
of the EEG component (as single predictor) as a potential biomarker. 
Based on these cut-offs, prediction models were built to evaluate the 
clinical utility of the EEG component for prediction purposes, by calcu-
lating the PPV (i.e. within-subsample response rate) and improvement 
of the response rate relative to the observed response rate in a cross-
tabulation.
Finally, a blinded out-of-sample validation was performed in male 
MDD patients receiving psychotherapy (dataset 4); response status was 
predicted based on the previously determined cut-off for rTMS with 
concurrent psychotherapy. Subsequently, the PPV and negative predic-
tive value (NPV) were calculated in a crosstabulation including all male 
patients. A sensitivity analysis consisting of the subgroups CBT versus 
other psychotherapy was also performed.
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Figure 1. Chart depicting the study set-up and analysis pipeline. The LORETA-fICA meth-
od was used in the discovery analysis. Data for this method consisted of 6 a priori defined 
frequency bands and 6239 voxels (6x6239) per subject (dataset 1). This resulted in 29 inde-
pendent cross-frequency spectral-spatial components. In male participants, only fICA EEG 
component 4 was found to be robustly associated with PRS-antidepressant response (PRS-
AR). No association was found in women. EEG component 4 was used for translational 
and discovery purposes in two independent datasets: MDD patients randomly prescribed 
antidepressants (escitalopram, sertraline or venlafaxine; dataset 2) and treated with rTMS 
and concurrent psychotherapy (dataset 3). Network activity of fICA EEG component 4 was 
significantly associated with treatment response in male, and – in the other direction (but 
not significant) – in female MDD patients. In another independent dataset (dataset 3), con-
sisting of patients who underwent psychotherapy, the network is found to be predictive of 
treatment response.
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RESULTS 

An overview of the baseline demographic characteristics and re-
sponse and remission rates per dataset after EEG preprocessing can 
be found in Table 1. 

Table 1. Baseline characteristics Abbreviations: rTMS = repetitive transcranial magnetic 
stimulation; PT = psychotherapy; QIDS = Quick Inventory of Depressive Symptomatology; 
BDI-II = Beck Inventory Index, version 2.
1  N = 1,123 subjects included in EEG statistical analyses (cleaned EEG data available), with 
N = 722 (also cleaned DNA data available) included in subsequent PRS (polygenic risk score) 
analyses.
2  N/A as this was a non-intervention study no treatment effects were assessed.

DISCOVERY ANALYSIS IDENTIFIES 29 COMPONENTS USING LORETA-FICA 

(DATASET 1)

Of the 1,195 participants enrolled in dataset 1, the final sample for 
the LORETA-fICA analysis after quality control (see Materials and 
Methods) consisted of 1,061 hospital-admitted psychiatric patients 
(most were diagnosed with MDD, schizophrenia and/or substance 
use disorder) and 62 controls (N = 1,123; dataset 1). The appropri-
ate dimensionality of the data was established using sphericity test 
which indicated 29.0 dimensions; hence the LORETA-fICA analysis 
was constrained to 29 components, accumulatively explaining 97.0% 
of the total variance in EEG power (see figure 1: discovery). 

RELATING COMPONENTS TO POLYGENIC RISK

Of the 1,123 participants, PRS association analysis was performed 
using the data of 722 participants remaining after EEG pre-process-

Dataset 1:
‘discovery’

1,195
1,1231

617/506
40.3 (13.2)
BDI-II; 31.1 (12.1)
N/A2

Dataset 3:
medication

1,008
535
245/290
38.5 (12.6)
QIDS; 14.5 (3.7)
48.8

Dataset 2:
rTMS + PT

196
193
95/98
43.3 (12.8)
BDI-II; 31.2 (10.1)
66.3

Dataset 3:
psychotherapy

175
141
50/91
37.2 (13.8)
BDI-II; 31.5 (9.3)
32.6

Totoal number participants
N included in study
Ratio men/women
Mean age (SD), years
Mean baseline score (SD)
Response rate (%)
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ing and genetic quality control (QC; see Table S1 for all QC steps). 
Among 29 outcomes and two sex-specific datasets, PRS-AR was as-
sociated with the individual fICA EEG component 4 score, after con-
trolling for age and the first five PCs ( = 0.172; R2 = 2.91%; optimal PT 
< 0.3) at p = 0.000567 in male participants. This EEG component was 
used for translational analysis. The PRS model fit of the association 
between fICA EEG component 4 and PRS-AR was indicative of high 
polygenicity (see figure 2). 
Figure 3 shows fICA EEG component 4 (this component explains 
0.78% of the total EEG variance), representing joint deactivation 
and activation of neural activities coming from sets of regions that 
form functional spatial-spectral networks. Most prominent are delta 
and theta power seen at the DLPFC, inversely correlated with delta 
power in the right anterior PFC. Also, delta – and to a lesser extent 
theta – activity is evident in somatosensory-motor cortices. Occipital 
activity is present within frequencies ranging from the delta (most 
prominent) to beta band. 
The individual EEG component 4 scores only correlated with some 
non-EEG related baseline characteristics in women, not in men. 

Figure 2. Polygenic risk regression model of antidepressant response in men using different 
p-value thresholds. The graphs show the explained variance (R2 as %) of EEG component 
4 in men by PRS-AR (polygenic risk score of antidepressant response [improvement]; blue 
bars), and the corresponding p-value (presented as -log; orange dot) on the x-axis per p-value 
threshold (PT) on the y-axis. The Bonferroni-corrected significance level is also presented 
(, grey dotted line). Note that, in general, the more lenient the PT is, the more variance is 
explained by the PRS (and the closer to significance its p-value is), indicating the EEG com-
ponent is highly polygenic.
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TRANSLATION AND DISCOVERY ANALYSIS IN AN INDEPENDENT  

TREATMENT RESPONSE DATASET (DATASET 2 AND 3)

The primary outcome for translational analysis (see figure 1: trans-
lation) was dimensional improvement of depressive symptoms and 
secondary was categorical response (defined as ≥50% reduction of 
baseline score), based on the BDI-II at baseline and after rTMS. Data 
were normally distributed.

Figure 3. Functional network of the component obtained with LORETA-ICA. Map of the 
EEG functional network obtained in this study using LORETA-ICA (independent compo-
nent 4). The colors represent correlated and inversely correlated EEG power changes of brain 
regions (when neural activity in red colored regions inceases, activity in blue colored regions 
decreases). The component covers activity in different parts of the brain, predominantly 
within the delta and theta frequency bands, and minimally within the alpha and beta fre-
quency bands. Delta band: frontally (mainly Brodmann area [BA] 6 and 8 to 10), occipitally 
(mainly BA 17 to 19), parietally (mainly BA 7 and 40), and temporally (mainly BA 21 and 
37). Theta band: frontally (mainly BA 6 and 9), occipitally (BA 17 to 19), and parietally (BA 
7 and 19). Alpha band: occipitally (BA 17 to 19) and partietally (mainly BA 7 and 19). Beta 
band: occipitally (BA 19)
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RELATING THE PRS-INFORMED EEG COMPONENTS TO ANTIDEPRESSANT 

MEDICATION OUTCOME (DATASET 2)

Of the 1,008 (dataset 3) participants, data of 535 were included for 
translational analysis (treated per protocol, sufficient clean EEG and 
all channels available).
First, linear regression analysis of ∆QIDS on individual EEG com-
ponent score with age as covariate yielded an R2 of 2.3% ( = -0.153;  
p = 0.019) in men, and R2 of 1.7 % ( = -0.131; p = 0.021) when baseline 
QIDS score was added as covariate. The association in women (with 
age as covariate) was found to be in the other direction, but was not 
significant (R2 = 0.125%;  = 0.035; p = 0.563).
Second, to examine categorical outcomes, an ANCOVA with EEG 
component score as dependent variable and response, sex and treat-
ment arm as fixed factors, and age as covariate yielded a significant (p 
< 0.05) interaction of response × sex, but no interactions with treat-
ment arm. Repeating this analysis in men and women separately 
yielded a main effect for male patients (d = 0.358, F = 7.168, p = 0.008), 
but no effect for women. Adding baseline QIDS (F = 6.795; p = 0.010) 
as additional covariate confirmed these results.

Based on the results of the previous analyses, a discriminant analysis 
was performed on men only and an ROC curve plotted (see figure 
4A). This showed that age and baseline QIDS did not significantly 
predict medication response (Wilk’s Lambda, λ = 0.981; Chi-Square, 
χ2 = 4.320; p = 0.115), but adding the EEG component to the model 
significantly improved response prediction (λ = 0.953; χ2 = 11.021; p 
= 0.012) with a PPV of 63% and area under the curve (AUC) of 0.623 
(p = 0.001; 95%-confidence interval, CI = [0.551-0.694]). A sensitivity 
analysis with the EEG component as the only predictor confirmed 
that the component significantly contributed to medication response 
prediction (λ = 0.969; χ2 = 7.178; p = 0.007).

RELATING THE PRS-INFORMED EEG COMPONENTS TO RTMS AND  

CONCURRENT PSYCHOTHERAPY OUTCOME (DATASET 3)

Of the 196 participants, data of 193 were included for translational 
analysis (sufficient clean EEG and all channels available). No signif-
icant correlations between the EEG component and baseline mea-
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sures (e.g. age, depression severity, anxiety etc.) were found in men 
(see Table S2).
First, linear regression analysis of ∆BDI-II on individual EEG com-
ponent score with age as covariate yielded an R2 of 5.3% ( = -0.230;  
p = 0.022) in men, and R2 of 4.6% ( = -0.215; p = 0.022) when baseline 
BDI-II score was also added as covariate. The association in women 
(with age as covariate) was found to be in the other direction, but was 
not significant (R2 = 3.4%;  = 0.185; p = 0.068). 
Second, to examine categorical outcomes, we performed an ANCO-
VA with EEG component score as dependent variable and response, 
sex and rTMS treatment site as fixed factors, and age as covariate 
yielded a significant (p<0.05) response × sex interaction. Repeat-
ing the analysis with response as fixed factor for men and women 
separately resulted in a main effect of response for men (d = 0.576;  
F = 7.211; p = 0.009), but not women. Adding baseline BDI-II  
(F = 7.462; p = 0.008) as additional covariate confirmed these results. 
A discriminant analysis revealed that age and baseline BDI-II did 
significantly predict treatment response in men (λ = 0.929; χ2 = 
6.739; p = 0.034), but adding EEG component 4 improved the model  
(λ = 0.859; χ2 = 13.914; p = 0.003) with a PPV of 76% and the ROC 
for this analysis (see figure 4B) yielded an AUC of 0.719 (p = 0.0004;  
95%-CI = [0.614-0.824]). A sensitivity analysis with the EEG compo-
nent alone confirmed significant contribution of the component to 
rTMS response prediction (λ = 0.930, χ2 = 6.698, p = 0.010).

Figure 4. ROC curve of the improved treatment prediction model for response. ROC (receiver 
operating characteristic) curve for the prediction of medication response (A) and rTMS and 
concurrent psychotherapy response (B) by the EEG component, age and baseline symptom 
severity as predictors (improved model), in men.
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UTILITY OF THE EEG COMPONENT AS RESPONSE PREDICTOR

The optimal network cut-off point was determined by calculating 
the maximum Youden index (J) of the ROC curves for response of 
the basic model. The maximum Youden’s J was at score 1491.055  
(J = 0.188) for antidepressant medication and 1577.460 (J = 0.258) 
for rTMS (and concurrent psychotherapy) in men, both cut-offs 
reached a sensitivity of 75%. Response status was predicted based on 
these cut-off points, which resulted in significantly better within- 
subsample response rates than expected based on the total observed 
response rates: PPV = 69% (improvement +26%) and NPV = 52%  
(p = 0.003) for medication, and PPV = 77% (+24%) and NPV = 48%  
(p = 0.018) for rTMS (see Table S3 for all results, including sensitivity 
and specificity).

APPLICATION OF THE EEG COMPONENT AS RESPONSE PREDICTOR  

(DATASET 4)

Of the 175 patients, 141 were included (receiving CBT or another 
form of psychotherapy, sufficient clean EEG and all channels avail-
able), of whom 50 were male patients with a response rate of 32%. 
Then, the response status of these male patients was predicted based 
on the cut-off for rTMS and concurrent psychotherapy. The pri-
mary analysis yielded the following results: PPV = 50% (+56%) and 
NPV = 73% (see Table S4 for all results). A planned sensitivity analy-
sis showed no differences between CBT and other psychotherapies 
(both PPV = 50%).

DISCUSSION 

Given psychological measures mapping poorly on neurobiology 
and cognizant of the scarce diagnostic and prognostic biomarkers 
in MDD (Krepel et al. 2019; Van der Vinne et al. 2017; Saveanu et 
al. 2015), we have here taken a novel, genetics-informed approach 
to elucidate whether a polygenic-informed EEG signature may help 
predict differential antidepressant treatment response. This proof-
of-concept demonstrates that using a polygenic risk score-informed 
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data-driven, data-reduction approach applied to resting-state EEG 
in a large set of hospital-admitted psychiatric patients and healthy 
controls (dataset 1), we were able to identify one spectral-spatial in-
dependent component (‘functional network’). We thus uncovered a 
functional network that in turn was associated with antidepressant 
medication, as well as rTMS and (concurrent) psychotherapy in in-
dependent datasets consisting of MDD patients. This network was 
found to be a sex-specific, nontreatment-specific, one-directional 
predictor for antidepressant response in male MDD patients.

Visualizing our functional network (figure 3), we found predomi-
nantly slow-wave activity 1) prefrontal jointly left-sided delta power 
(mainly DLPFC) that was inversely associated with right-sided delta 
(and theta) power (mainly in the anterior portion of the PFC); 2) slow 
wave (delta and theta) power in the somatosensory-motor cortex; 3) 
both slow as well as fast wave power within the visual cortex. This 
slow-wave network might be difficult to interpret, and does not over-
lap with prior imaging studies (to our knowledge). Future research 
should further investigate the exact functional implications of this 
network and/or validate this against other imaging modalities. 

The individual strength of the network was associated with treat-
ment outcome in a sex-specific manner. Several hypotheses might 
explain the predictive value of the network for antidepressant treat-
ment outcomes in MDD. Abnormalities of the PFC as a network 
node are known to be implicated in the etiology of MDD and have 
previously been associated with treatment outcome (Fonseka, Mac-
Queen, and Kennedy 2018). TMS applied to the PFC, however, re-
sults in transsynaptic activation of deeper areas such as the subgen-
ual Anterior Cingulate Cortex (Fox et al. 2012) and the frontal-vagal 
pathway (Iseger et al. 2020). It is plausible that, by modulating neural 
activity at the stimulation site, TMS synchronically activates remote 
cortical areas and thereby modulates dysfunctional functional con-
nectivity between areas of the network in a cross-frequency manner. 
Also, TMS induces anticorrelations between the DLPFC and medial 
prefrontal areas of the default mode network (Liston et al. 2014). 

The predictive value of the network with regards to treatment out-



51

come was tested in MDD patients prescribed to randomized antide-
pressant treatment (dataset 2) and treated by rTMS and concurrent 
psychotherapy (dataset 3). Primary and secondary analyses showed 
that the network was categorically and dimensionally associated with 
response to antidepressant medication and rTMS in a sex-specific 
manner, namely in men only. Two clinical cut-offs (one for psycho-
pharmacotherapy, one for rTMS and concurrent psychotherapy) 
were established for prediction purposes in male MDD patients. The 
response rate improved for medication (+26%) as well as rTMS during 
psychotherapy (+24%) based on these cut-offs. To investigate if the 
effect was attributed to rTMS or psychotherapy, we blindly and pro-
spectively applied the EEG component and earlier determined clini-
cal cut-off to another independent dataset of MDD patients treated 
with psychotherapy without rTMS (dataset 4). The response rate im-
proved with 56% in male patients treated with psychotherapy, which 
could suggest that the former results for rTMS during psychotherapy 
were driven by psychotherapy.

Unfortunately, based on the results of this study we could not predict 
treatment outcome in female patients; prediction accuracy measures 
were restricted to men only. We aimed at performing the latter anal-
ysis in two independent datasets consisting of MDD patients treated 
with rTMS (and sham), but by having to restrict the datasets to male 
(non)responders, both samples were too small and underpowered, 
which yielded unreliable and therefore inconclusive results. We sug-
gest replicating this study in larger sample sizes, with a sufficient 
number of observed responders. Furthermore, the strength of the 
EEG component lies in predicting the likelihood that the patient is 
a responder given that the component has identified the patient as 
a responder. A limitation here, is that the EEG component has no 
stratification potential, so no alternative treatment strategy – other 
than the antidepressant treatments studied here – which increases 
the chance of response, could be determined. Better prediction per-
formance with both high PPV and NPV or/and with stratification po-
tential is desired for clinical purposes. Future research that includes 
other antidepressant treatments, such as electroconvulsive therapy 
(ECT), may provide additional insights on predicting beneficial treat-
ment for all MDD patients. 



52

Rest-EEG recordings and subsequent calculation of network score 
in treatment-naive MDD patients before treatment inception is like-
ly relatively economical and non-invasive. An EEG signature may 
thus in future provide a useful construct for treatment stratifica-
tion, thereby enhancing chances of initial response, thus limiting 
the relative inefficiency of the current stepped-care, ‘trial-and-error’ 
approach. Given that efficacy of antidepressant treatment in the gen-
eral MDD population is moderate (Voigt, Carpenter, and Leuchter 
2019; Barth et al. 2016; Simon 2002), and antidepressant discontinu-
ation and switching rates are high (Demyttenaere et al. 2001; Mullins 
et al. 2005; Goethe et al. 2007), only slightly increased response rates 
may reduce disease burden and duration.

External validation using two large, independent datasets, and espe-
cially the blinded-out-of-sample validation are important strengths 
of this study. High-density EEG was used for LORETA-fICA, which 
improves the low spatial resolution compared to low-density EEG, 
but was only available for the independent datasets used for trans-
lational purposes. However, the fICA-LORETA method is applicable 
to all EEGs independently of apparatus, electrode configuration or 
number of electrodes since it is derived from the voxel-level rather 
than the electrode level.

Furthermore, to allow for future clinical translation of our findings 
we have highlighted several clinically intuitive outcome measures 
that indicate clinical relevance of the EEG component we retrieve. 
Nonetheless, limitations of our study include the lack of a place-
bo-controlled arm, precluding analyses that parse placebo effects. 
In addition, the network was able to improve the response rates of 
rTMS with concurrent psychotherapy, but we could not rule out that 
it was also predictive for rTMS alone. Furthermore, for visualization 
of neural activity, the fICA-LORETA method calculates power on a 
categorical scale (i.e. frequency bands) instead of a continuous scale 
(i.e. power spectrum), thereby limiting the interpretation of the func-
tional networks that are obtained by fICA. Finally, while for our pre-
diction model we relied on the EEG signature, future studies should 
aim to further optimize prediction by also including other baseline 
variables, which are likely to further improve the clinical response.
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In conclusion, in this proof-of-concept study we show for the first 
time how a genetics-informed data-driven, data-reduction approach 
identifies an EEG functional brain network that is of predictive value 
to MDD treatment. Our method highlights the clinical applicability 
of such an approach and sets the stage for future stratified psychiatry 
research.
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SUPPLEMENTARY INFORMATION

SUPPLEMENTARY MATERIALS AND METHODS
DNA ISOLATION AND GENOTYPING

DNA was isolated and genotyped for 887 participants admitted to the 
department of psychiatry at ZNA (Ziekenhuis Netwerk Antwerpen, Bel-
gium) who provided informed consent for DNA extraction and analy-
ses. One 10 ml ethylenediaminetetraacetic acid (EDTA) tube was filled 
during standard blood draws at the ward. DNA was extracted in the 
clinical molecular genetics laboratory of the University Medical Center 
Utrecht (UMCU). Samples were brought to a DNA concentration of 50 
ng/µl with a total concentration of 200 ng DNA per participant. Subse-
quently, samples were sent in two batches to the Human Genotyping 
Facility of Erasmus Medical Center (Erasmus MC) Rotterdam for Glob-
al Screening Array v.1 (GSA) by Illumina, Santa Clara (California), USA, 
that has excellent validity and reliability (De, Bush, and Moore 2014).

GENETIC QUALITY CONTROL

Quality control (QC) and genetic-ancestry principal component anal-
ysis (PCA) were done with PLINK 1.9 (S. Purcell et al. 2007) and per-
formed on the two batches separately (Table S1). Pre-imputation in-
volved the creation of a superset with the highest quality SNPs for 
subsequent sample QC. The superset of SNPs was created by exclud-
ing those with genotype missing call rates >0.01, minor allele frequen-
cies (MAF) <0.1, Hardy-Weinberg equilibrium (HWE) <10-4, and link-
age disequilibrium (LD) r2 >0.2, with a window size of 50 and window 
shifting of a step size of 5. Using the superset, subjects were removed 
who: 1) had a mismatch in their sex between reported and genotyped; 
2) were too extremely hetero- or homozygous (their F-values differed 
≥3 SDs from the mean in the whole cohort); 3) were related (their pi-hat 
was above 0.1: one of each pair was randomly excluded); and 4) were 
cohort outliers (had values for the first two ancestry principal compo-
nents (PCs) that deviated ≥3 SDs from the mean of the whole cohort). 
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This was followed by a regular SNP-level QC for exclusion of ill per-
forming SNPs: variants with genotyping missing rate >0.01, MAF < 
0.01, HWE p-value <10-5 were thus excluded. European ancestry was 
checked by comparing with the HapMap population: individuals were 
removed who deviated ≥3 SDs from first and second genetic ancestry 
PCs from the Northern and Western European (CEU) population. 

Lastly, before imputation, genotypic data was compared with the 
Haplotype Reference Consortium panel. Strands, alleles, positions 
and frequency differences were checked. Chromosomes were pre-
phased and imputed using the Michigan Imputation Server (Das 
et al. 2016). Post-imputation QC was performed to include reliable 
SNPs: variants that had a MAF >0.05 and LD r2 ≥0.8 were includ-
ed, resulting in 5,211,700 SNPs available to generate a polygenic risk 
score (PRS) in 762 individuals remaining after QC.

POLYGENIC RISK SCORE CALCULATION

The summary statistics (Pain et al. 2020) of antidepressant response 
(AR) were used to generate PRSs (Choi, Mak, and O’Reilly 2020). If 
only odds ratios (ORs) were reported in the summary statistics, ORs 
were log-converted to beta values as effect sizes. To that end, the beta 
values, effective allele, and p-values were extracted from all summary 
statistics. 

SNPs that overlapped between the summary statistics GWASs (train-
ing datasets), 1,000 genomes (reference), and our dataset (target) 
were extracted. Then, insertions or deletions, and ambiguous SNPs, 
were excluded. To account for complicated LD structure of SNPs in 
the genome, these SNPs were clumped in two rounds using PLINK 
1.90b3z (Chang et al. 2015) according to previously established meth-
ods (Schür et al. 2019; McLaughlin et al. 2017); round 1 with the de-
fault parameters (physical distance threshold 250 kb and LD thresh-
old (r2) 0.5); round 2 with a physical distance threshold of 5,000 kb 
and LD threshold (r2) 0.2. Additionally, we excluded all SNPs in ge-
nomic regions with strong or complex LD structures. Sample overlap 
between training datasets with our target samples is unlikely since all 
samples belong to different cohorts and no Belgians had been includ-
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ed in the aforementioned GWASs used to generate PRSs. 
We constructed PRSs based on risk alleles weighted by their effect 
sizes estimate using PLINK’s score function for 11 GWAS p-value 
thresholds (Purcell et al. 2009; Das et al. 2016): 5×10-6, 5×10-5, 5×10-
4, 5×10-3, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.

EEG RECORDINGS

During EEG recordings, subjects were seated in a sound and light 
attenuated room that was controlled at an ambient temperature of 
around 22°C. The participants were instructed to sit still for the dura-
tion of the recording without thought instructions. The operator did 
not intervene when drowsiness patterns were observed in the EEG.
Resting-state eyes closed EEG recordings for dataset 1 were acquired 
from 65 channels of the Electrical Geodesics Incorporated (EGI; Mag-
stim, UK) system (dataset 1) and from 26 channels (10-20 electrode 
international system: Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, 
C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz, and O2) 
of the Neuroscan NuAmps (Compumedics, Australia; dataset 2 and 
3). Data were recorded for three (dataset 1) or two (dataset 2 and 3) 
minutes during eyes closed condition. The sampling frequency was 
500 Hz for most recordings, but 1,000 Hz for 6 recordings in dataset 
1 (which were down-sampled to 500 Hz prior to further analyses). 
Data were referenced to Cz (dataset 1) or average mastoids with a 
ground at AFz (dataset 2 and 3). Horizontal eye movements were re-
corded with electrodes 61 and 64 (dataset 1) or electrodes placed 1.5 
cm lateral to the outer canthus of each eye (dataset 2 and 3). Vertical 
eye movements were recorded with electrodes 5 and 62 (dataset 1) 
or electrodes placed 3 mm above the middle of the left eyebrow and 
1.5 cm below the middle of the left bottom eyelid (dataset 2 and 3). 
Cartesian coordinates of the EGI system electrodes (dataset 1) were 
converted to spherical coordinates prior to EEG preprocessing.

LORETA-FICA MODEL

The typical ICA model assumes that the source signals are not ob-
servable, statistically independent and non-Gaussian, with an un-
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known, but linear, mixing process (Calhoun, Liu, and Adali 2009), 
and is described by the following formula:
x = As
where x, A and s represent matrices. In our case, these three matrices 
consisted of the following data: 
1. Matrix x with 1,123 rows corresponding to all subjects of dataset 1, 

and the data per subject consists of 37,434 (6,239x6) columns cor-
responding to the spectral power at 6,239 cortical voxels for the 
six frequency bands. This approach, using a priori determined 
frequency bands, is a unique feature of the method used (Pas-
cual-Marqui and Biscay-Lirio 2011). 

2. Matrix s with 29 rows corresponding to the number of statistical-
ly independent components (i.e. functional networks), and 37,434 
columns. In this way, each functional network contains 6 spatial 
images corresponding to neural activity of each frequency band 
(i.e. in a cross-frequency manner).

3. Matrix A with 1,123 rows and 29 columns. Thus, what remains of 
this data reduction for every subject is the amount of each com-
ponent that was used for that subject. This amount is expressed 
as a loading (i.e. signed weight or score) per functional network 
for each subject.
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SUPPLEMENTARY RESULTS

Table S1. QC steps of genotype data. Abbreviations: QC = quality control; SD = standard 
deviation; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE 
= Hardy-Weinberg equilibrium; LD = linkage disequilibrium; PC = principal component; 
HapMap = haplotype map; GSA = global screening array.
a ‘-’ is referring to excluded in this QC step; b 762 individuals retained after post-imputation 
QC, of those 40 were excluded after EEG preprocessing.

Table S2. Correlation between the LORETA-fICA component and baseline characteristics.
Abbreviations: QIDS = Quick Inventory of Depressive Symptomatology; BDI-II = Beck De-
pression Inventory, second edition; DASS = Depression Anxiety Stress Scales; N/A = data for 
analysis not available.

 
Quality control stepsa   Subjects  SNPs
    Batch 1 Batch 2 Batch 1 Batch 2
Data available for QC genotyping  537 350 686,082 692,319
  Pre-imputation steps (separate batches)
Individuals >0.05 missing genotypes  -4 -0 
Creating SNP superset   533 350 686,082 692,319
Genotype rate <0.01, MAF <0.1, HWE <1×10-4, LD pruning (50 5 0.2)  -545,698 -530,759
Perform subject-level QC with SNP superset  533 350 140,384 161,560
Sex check, heterozygosity (≥3 SD), relatedness,  (≥3 SD) -20 -62
pi-hat >0.1, genetic outliers 
Normal SNP QC   513 288 686,082 692,319
Genotype rate <0.01, MAF <0.01, HWE <1×10-5   -227,781 -197,418

Compare with HapMap   513 288 458,301 494,901
Removal of genetic outliers (≥3 SD) from HapMap-CEU -1 -18 
Retained after pre-imputation QC  512 270 458,301 494,901
  Post-imputation steps (merged batches)
Imputed total                16,271,699
QC (MAF <0.05, LD R2 ≥0.8)              -11,059,999
FINAL post-imputation TOTAL             762b             5,211,700

Baseline   Effect size of Pearson correlation with independent EEG component 4
characteristic  Pharmacotherapy   Transcranial magnetic stimulation (TMS)
  Women  Men  Women  Men
Age  r = 0.010 (p > 0.05) r = 0.015 (p > 0.05) r = -0.082 (p > 0.05) r = 0.013 (p > 0.05)
Years of education r = -0.122 (p = 0.038) r = 0.078 (p > 0.05) r = -0.023 (p > 0.05) r = -0.174 (p > 0.05)
BDI-II/QIDS  r = 0.110 (p > 0.05) r = -0.028 (p > 0.05) r = 0.218 (p = 0.031) r = -0.045 (p > 0.05)
DASS-anxiety  r = -0.030 (p > 0.05) r = 0.066 (p > 0.05) r = 0.028 (p > 0.05) r = 0.036 (p > 0.05)
DASS-stress  N/A N/A r = 0.008 (p > 0.05) r = -0.017 (p > 0.05)
DASS-depression N/A N/A r = 0.296 (p = 0.004) r = -0.067 (p > 0.05)
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ADDITIONAL INFORMATION:

Pearson correlation analyses showed significant correlations at 
p<0.05 between the obtained LORETA-ICA EEG component with 
baseline depression symptom severity in the rTMS sample and with 
educational level in the iSPOT-D sample (see Table S2) in women, 
but not in men.

Table S3. Response prediction based on network loading cut-offs male MDD patients.
Abbreviations: rTMS = repetitive transcranial magnetic stimulation; PT = psychotherapy; 
R = response; NR. = non-response; obs. = observed (numbers of true responders and non-re-
sponders in the dataset); pred. = predicted (based on two cut-offs); PPV = positive predictive 
value; NPV = negative predictive value; Fisher = Fisher exact test; V = Cramérs V (effect size).
a  cut-off point = 1,491; b  cut-off point = 1,577; *  exact two-tailed p-value from Fisher’s test.

Table S4. Blinded out-of-sample validation of the EEG signature in male MDD patients.
Abbreviations: R = response; NR = non-response; obs. = observed (numbers of true respond-
ers and non-responders in the dataset); pred. = predicted (based on cut-off); PPV = positive 
predictive value; NPV = negative predictive value.

 Antidepressant medicationa  rTMS and concurrent PTb

  obs. R obs. NR  obs. R obs. NR
R-pred. N = 53 N = 24  N = 30 N = 9
NR-pred. N = 74 N = 81  N = 29 N = 27
total N = 127 N = 105  N = 59 N = 36
prediction performance
 PPV NPV  PPV NPV
 69% 52%  77% 48%
 Sensitivity Specificity  Sensitivity Specificity
 42% 77%  51% 75%
statistics Fisher V  Fisher V
 0.003* 0.2  0.018* 0.255

 Psychotherapy
 obs. R obs. NR
R-pred. N = 5 N = 5
NR-pred. N = 11 N = 29
total N = 16 N = 34
prediction performance 
 PPV NPV
 50% 73%
 Sensitivity Specificity
 31% 85%
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ABSTRACT

Major depressive disorder (MDD) is a highly prevalent psy-
chiatric disorder, but chances for remission largely de-
crease with each failed treatment attempt. It is therefore 

desirable to assign a given patient to the most promising individu-
al treatment option as early as possible. We used a polygenic score 
(PGS)-informed electroencephalography (EEG) data-driven approach 
to identify potential predictors for MDD treatment outcome. Post-
hoc we conducted exploratory analyses in order to understand the 
results in depth. First, an EEG independent component analysis pro-
duced 54 functional brain networks in a large heterogeneous cohort 
of psychiatric patients (N = 4,045; 5-84 yrs.). Next, the network that 
was associated to PGS for antidepressant-response (PRS-AR) in an 
independent sample (N = 722) was selected: an age-related posterior 
alpha network that explained >60% of EEG variance, and was highly 
stable over recording time. Translational analyses were performed 
in two other independent datasets to examine if the network was 
predictive of psychopharmacotherapy (N = 535) and/or repetitive 
transcranial magnetic stimulation (rTMS) and concomitant psycho-
therapy (PT; N = 186) outcome. The network predicted remission to 
venlafaxine (p = 0.015), resulting in a normalized positive predicted 
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value (nPPV) of 138%, and rTMS + PT – but in opposite direction for 
women (p = 0.002) relative to men (p = 0.018) – yielding a nPPV of 
131%. Blinded out-of-sample validations for venlafaxine (N = 29) and 
rTMS + PT (N = 36) confirmed the findings for venlafaxine, while 
results for rTMS + PT could not be replicated. These data suggest the 
existence of a relatively stable EEG posterior alpha ageing network 
related to PGS-AR that has potential as MDD treatment predictor.

INTRODUCTION 

Major depressive disorder (MDD) is one of the most common psy-
chiatric disorders, affecting over 300 million people worldwide and 
leading to over 50 million years lived with disability. Prevalence rates 
vary by age, peaking in older adulthood and are higher for women 
than men at all ages (WHO 2017). Pharmacotherapy and psychother-
apy constitute effective (first-line) treatment options, but the major-
ity of patients do not achieve remission after their first treatment 
attempt. These patients therefore require several treatment steps, 
with one third still not sufficiently responding (failing to remit) af-
ter four sequential treatment steps (Rush et al. 2006). When patients 
don’t respond to medication and/or psychotherapy, the clinician may 
also consider repetitive transcranial magnetic stimulation (rTMS), a 
non-invasive, well-tolerated brain stimulation method efficacious in 
the treatment of MDD (Lam et al. 2008).

Despite these various effective treatment options for patients with 
MDD, little is known about the underlying biological or clinical prog-
nostic factors that could predict treatment outcome, leading to an 
undesirable trial-and-error approach in treatment selection for a giv-
en patient. Recent evidence suggests that antidepressant treatment 
response has a complex polygenic architecture (Pain et al. 2020), 
which warrants studying polygenic scores (PGS) (Lewis and Vassos 
2020), instead of individual variants that predict antidepressant re-
sponse (Nøhr et al. 2022). Regarding biological factors, antidepressant 
efficacy differs between the sexes, and various possible underlying 
mechanisms have been proposed, including differences in synaptic 
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transmission and pharmacokinetics (LeGates, Kvarta, and Thomp-
son 2019). We previously demonstrated sex-specific differences in 
biomarkers related to antidepressant response for alpha-asymmetry 
(Arns et al. 2016), connectivity (Iseger et al. 2017), and event-related 
potentials (Dinteren et al. 2015). Therefore, it may be advantageous 
for biomarker research on depression to focus on female and male 
patients separately. 

Electroencephalography (EEG) oscillations, generally described in 
terms of frequency bands, could provide such biomarkers for psychi-
atric disorders (Silva 2013). A wide range of potentially useful features 
can be derived from the EEG, such as band power and network-based 
metrics, and some have been previously associated with antidepres-
sant outcome: decreased parieto-occipital alpha power for example 
predicts poor antidepressant response (Olbrich and Arns 2013). Func-
tional brain network measures have been found to be heritable, to 
change with normal aging, and to be abnormal in clinical disorders 
(Bassett and Bullmore 2009), and are thus of interest for biomarker 
research. Functional independent component analysis (fICA) using 
eLORETA (exact Low Resolution Brain Electromagnetic Tomogra-
phy) is a method for extracting information from the EEG by separat-
ing multivariate EEG signals into additive independent spectral-spa-
tial components, or functional brain networks (Aoki et al. 2015). 

Given the low chances of remission following each antidepressant 
treatment on the one hand and the lack of firmly established bio-
markers for such treatments on the other, there is interest in bio-
markers to help guide individualized treatment and thereby reduce 
chances of unsuccesful treatment trials. In a recent proof-of-prin-
ciple study, combining PGS for antidepressant response (PGS-AR) 
with eLORETA-fICA, we demonstrated how a polygenic-informed 
EEG data-driven, data-reduction approach within a large dataset of 
more than thousand adult psychiatric patients, resulted in an EEG 
signature that was associated with MDD treatment response, in male 
patients only (Meijs et al. 2022). In the current follow-up study, we 
aimed to identify a functional brain network capable of differentially 
predicting remission to MDD treatments in men and women. The 
eLORETA-fICA was applied to a lifespan database consisting of more 
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than 4,000 psychiatric patients, to better capture functional brain 
networks across the lifespan. Subsequently, an association analysis 
with PGS-AR was performed in an independent dataset to select a 
functional network with expected prognostic potential. In four in-
dependent datasets, translational and subsequent blinded-out-of-
sample approaches were conducted to test the predictive value of 
the network.
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MATERIALS AND METHODS

Our approach is visualized in figure 1.

Figure 1. Flowchart depicting the study set-up and analysis pipeline. The first part of the 
discovery analysis (dataset 1: TDBRAIN+), using the eLORETA-fICA method, is shown up-
per left. Data for this method consisted of six a priori defined frequency bands and 6239 
voxels (6x6239) per subject. This resulted in 54 independent cross-frequency spectral-spatial 
components. In the second part of the discovery analysis (dataset 2) we found the first fICA 
component (EEG component 1; an alpha posterior network) to be robustly associated with 
the polygenic score for antidepressant response (PGS-AR) in men and women, shown upper 
right. This alpha posterior network was used for translational purposes in two independent 
datasets: depressive patients treated with pharmacotherapy (dataset 3; iSPOT-D) or rTMS 
and concomitant psychotherapy (rTMS + PT; dataset 4), which is shown below. Network 
activity of the posterior alpha network was associated with remission and response to both 
venlafaxine and rTMS + PT. In another independent dataset (dataset 5), consisting of pa-
tients who received venlafaxine, results were validated. The findings for rTMS + PT could 
not be replicated (dataset 6).

Translation
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DATASET 1: PARTICIPANTS FOR THE FICA IN ELORETA

The Two Decades-Brainclinics Research Archive for Insights in 
Neurophysiology (TDBRAIN), in addition to data from other clin-
ics (TDBRAIN+) was used for the first analysis (also see Voetterl et 
al., 2022 (Voetterl et al. 2022)). TDBRAIN+ contains clinical lifespan 
(5-89 years) resting-state eyes-closed EEG data complemented with 
relevant clinical and demographic data of a heterogeneous collec-
tion of patients and healthy participants. The open access TDBRAIN 
dataset is freely available at http://www.brainclinics.com/resources, 
with all data recorded at Research Institute Brainclinics (Brainclinics 
Foundation, Nijmegen, The Netherlands (Van Dijk et al. 2022)). TD-
BRAIN+ was used for fICA and consisted of 4,045 participants (clean 
preprocessed EEG data suitable for fICA). All participants (or their 
guardians when underaged) provided written informed consent.

DATASET 2: PARTICIPANTS FOR THE PGS-INFORMED EEG COMPONENT 

SELECTION.

The second dataset was a sample from Meijs et al. (Meijs et al. 2022) 
and consisted of 722 adult participants (clean preprocessed rest-
ing-state eyes-closed EEG data as well as genome-wide data that had 
undergone extensive individual and genotype-level quality control, 
QC) with a variety of psychiatric diagnoses. The study was approved 
by the Institutional Review Board of Ziekenhuis Netwerk Antwerpen. 
All participants provided written informed consent. Further details, 
such as genotype-level QC and the calculation of polygenic scores 
have been published by Meijs et al. (Meijs et al. 2022).

DATASET 3: PARTICIPANTS FOR TRANSLATION ANALYSIS (ISPOT-D ANTIDE-

PRESSANT MEDICATION).

The third dataset was the iSPOT-D sample (International Study to 
Predict Optimized Treatment in Depression), an international mul-
ticenter, randomized, prospective open-label trial (phase-IV clinical 
trial). This study consisted of 1,008 patients diagnosed with non-psy-
chotic MDD who were randomized to one of the selective serotonin 
reuptake inhibitors (SSRIs) escitalopram or sertraline, or to the sero-
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tonin and norepinephrine reuptake inhibitor (SNRI) venlafaxine. The 
study protocol was approved by the institutional review boards at all 
of the participating sites and this trial was registered with Clinical-
Trials.gov under id NCT00693849. All participants provided written 
informed consent. At baseline and after eight weeks of treatment 
patients filled in the Quick Inventory of Depressive Symptomatolo-
gy (QIDS). Only data from participants who completed eight weeks 
of randomized medication treatment (‘per protocol’ sample) were 
included. Details about this sample have been published elsewhere 
(Arns et al. 2016; Williams et al. 2011).

DATASET 4: PARTICIPANTS FOR THE TRANSLATIONAL APPROACH (RTMS 

AND CONCURRENT PSYCHOTHERAPY)

The fourth dataset consisted of 196 patients diagnosed with non-psy-
chotic MDD, who were treated with high-frequency TMS (10-Hz left 
dorsolateral prefrontal cortex, DLPFC) or low-frequency TMS (1-Hz 
right DLPFC); a minority received both 1-Hz and 10-Hz sequentially. 
All patients completed at least ten sessions of treatment, and filled 
in the BDI-II at baseline and at the last session (on average session 
21). Concurrent with rTMS, patients received psychotherapy (rTMS 
+ PT). All participants provided written informed consent. Details 
about this sample are described elsewhere (Donse et al. 2017; Krepel 
et al. 2019).

DATASET 5: PARTICIPANTS FOR BLINDED OUT-OF-SAMPLE VALIDATION 

(VENLAFAXINE).

The fifth dataset included patients diagnosed with non-psychotic 
MDD or dysthymia and a BDI-II score ≥14 at baseline, who received 
venlafaxine, either as monotherapy (N = 9) or in combination with 
psychotherapy (N = 20). Response and remission were based on the 
BDI-II score at intake (baseline), and again after eight weeks of medi-
cation (monotherapy) or at the end of psychotherapy if this preceded 
the eight weeks of medication (combination). For more details, see 
Van der Vinne et al. (Van der Vinne et al. 2021)
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DATASET 6: PARTICIPANTS FOR BLINDED OUT-OF-SAMPLE VALIDATION  

(1-HZ RTMS).

Data for the sixth dataset were collected in the same way as dataset 
4 described in Voetterl et al. (Voetterl 2023). In short, 36 patients di-
agnosed with non-psychotic MDD or dysthymia and BDI-II ≥14 at 
baseline, received protocolized 1-Hz rTMS + PT. Response and remis-
sion were based on the BDI-II score at baseline and after treatment 
completion, at least ten treatment sessions.

EEG RECORDINGS AND PREPROCESSING

Resting-state eyes closed EEG recordings (for more details see Sup-
plementary Methods and Materials) for all datasets were acquired 
using a 26-channel system of the Neuroscan NuAmps, Quickcap or 
ANT-Neuro Waveguard Cap (Compumedics, Australia) except for 
dataset 2, here we used the 65-channel cap (64-channel plus Cz) of 
the Electrical Geodesics Incorporated (EGI; Magstim, UK) system.
For TDBRAIN+ (dataset 1), previously published automatic prepro-
cessing routines were adapted to be compatible for use in Python 
described by Van Dijk et al. (Van Dijk et al. 2022), while Brain Vision 
Analyzer 2.0 (Brain Products, Germany) software was used for subse-
quent digital signal-processing in the other datasets.

In short, the following steps were taken in the EEG preprocessing: 
data were bandpass-filtered, the notch-frequency was removed; 
electro-oculography (EOG) was corrected using a regression-based 
technique (Gratton, Coles, and Donchin 1983), while noisy signals or 
flat lines were corrected by spherical spline interpolation. Artifacts 
were removed in Brain Vision Analyzer by rejection of epochs that 
did not meet the criteria (maximal allowed difference of 150 µV peak-
to-peak), or using the preprocessing pipeline (Python (Van Dijk et al. 
2022), and also available at www.brainclinics.com/resources): signals 
that contained artifacts for more than 66% of the measurement were 
repaired using a Euclidian distance weighted average of at least three 
neighboring channels. All data were segmented into epochs of four 
seconds.
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ELORETA-FICA MODEL

The EEG was used for estimating the cortical source distribution of 
electric neuronal activity by means of eLORETA (exact low-resolu-
tion electromagnetic tomography; free academic software available 
at https://www.uzh.ch/keyinst/loreta). This method weights mini-
mum norm inverse solution, and localization inference is based on 
the standardized estimates of the current density (Pascual-Marqui et 
al. 2011). 
In short, the following analysis steps, as described in our prior 
proof-of-principle study (Meijs et al. 2022) were performed. First, 
each EEG recording (epoch) was transformed to the frequency do-
main. Cross-spectral matrices were obtained for six predefined fre-
quency bands: delta (1.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta 
(14.5-30 Hz), low-gamma (31-47 Hz), and high-gamma (>70 Hz). Sec-
ond, from each cross-spectrum matrix, the spectral density was com-
puted for each cortical voxel. Third, the spectral-spatial data of all 
subjects were concatenated as input for the independent component 
analysis (ICA), aiming to identify cross-frequency, independent spec-
tral-spatial components (i.e. functional networks). This method was 
recently validated in our proof-of-principle study (Meijs et al. 2022) 
as well as in Aoki et al. (Aoki et al. 2015) and Gerrits et al. (Gerrits et 
al. 2019), where it reliably identified DMN (default mode network) 
and TP (task-positive) networks.

INDEPENDENT COMPONENTS

Each functional network (fICA component) represents sets of brain 
regions that are consistently activated or deactivated together with-
in and across given frequency band(s). An optimal number of com-
ponents was determined using the Bayesian Information Criterion 
(BIC). To visualize the functional networks (i.e. (anti)correlated brain 
regions), a threshold was set at three z-values. Per fICA component, 
scores were obtained for each participant, corresponding to the ac-
tivity of the network for a given individual subject. The functional 
networks that were established based on the first dataset, were pro-
spectively applied to the other datasets. Likewise, for each subject 
in each dataset, EEG component scores were obtained per network. 
These scores were used in the statistical analyses.
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OUTCOME MEASURES

For component selection (dataset 2), the independent EEG components 
were regressed on PGS-AR. In line with prior work (Voetterl et al. 2022), 
we primarily focused on remission as an outcome measure, and sec-
ondarily on response. Outcomes were based on the Quick Inventory of 
Depressive Symptomatology (QIDS) for the iSPOT-D sample (dataset 
3) and Beck Depression Inventory II (BDI-II) for the rTMS + PT sample 
(dataset 4), which are both self-report questionnaires, taken at intake 
and after treatment completion (on average at week eight for antide-
pressants and at session 21 for rTMS). Remission was defined as a score 
of ≤5 on the QIDS or ≤12 on the BDI-II, and response was defined as 
≥50% reduction relative to the baseline score, both at treatment com-
pletion.

STATISTICAL ANALYSES 

SPSS (IBM SPSS Statistics for Macintosh (Version 27.0) 2020) was used 
for statistical analyses. Effect sizes (ES) of significant main effects are 
reported as Cohen’s d (d) for binary measures or as explained variance 
(R2) and/or standardized beta () for continuous measures. Two-sided 
tests were performed for statistical significance testing.
To examine potential sex-specific associations, sex was included as 
main factor, or – in case the analysis could not accommodate sex as 
main factor – women and men were analysed separately, rather than 
handled as covariate since covariation can only resolve quantitative 
(not qualitative) sex differences. If no sex interaction with outcome was 
found, or the effect for both sexes was in the same direction, analyses 
were performed on men and women combined. We then applied a se-
ries of analyses to discover an EEG component with predictive value 
on outcome.

First, after generating the EEG component scores (as described above) 
in dataset 1, for our discovery analysis we examined if there was an as-
sociation between these fICA components and PGS-AR (dataset 2). To 
that end, linear regression, controlling for age and the first five genetic 
ancestry principal components (PCs), was run between all individual 
component scores and 11 PGS-ARs binned at p-value thresholds (PT = 
5.0×10-6 to PT = 1) to choose the optimal PT, which is unknown a prio-
ri (Choi, Mak, and O’Reilly 2020). The significance level was correct-
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ed for the number of components and sex-specific subgroup analyses 
and therefore set to  = 0.05/(54×3) = 0.0003. The EEG component (i.e. 
functional network) that showed the most significant association with 
PGS-AR was selected for subsequent analyses.

Second, translational analyses were performed (dataset 3 and 4) to ex-
amine if the selected network was associated with psychopharmaco-
therapy and/or rTMS + PT remission. The significance level for these 
follow-up analyses was set at conventional  = 0.05 as these analyses 
were intended for translation of the findings in the discovery analysis. 
Subsequent blinded-out-of-sample validation datasets were available to 
verify obtained any associations detected. Factorial ANCOVAs were run 
to establish whether the individual network scores were significantly 
different in remitters compared to nonremitters. Sex was added as fixed 
factor to analyse sex interactions; for medication SSRI versus SNRI and 
for rTMS 10-Hz versus 1-Hz were also added as fixed factors to analyse 
treatment arm effects. Age and baseline severity scores were added as 
covariates to these models.

If the ANCOVA showed significant main effects, a discriminant anal-
ysis was performed to assess the predictive value of the selected func-
tional network as a single predictor. Mediation analyses by PROCESS 
version 4.0 for SPSS (Hayes 2020) were done to investigate if age or 
baseline severity mediated the relationship between the network and 
remission, covarying for baseline severity or age. The optimal network 
score cut-off points for classifying patients as ‘remitter’ of ‘nonremit-
ter’ were determined by calculating the maximum Youden Index (J), 
which measures the accuracy of a dichotomous diagnostic test. Based 
on these cut-offs, a prediction model was built to evaluate the clinical 
utility of the network for prediction purposes, by calculating the pos-
itive predictive value (PPV), normalized PPV (nPPV; corrected for the 
actual remission rate) and overall predictive value (equal to accuracy) 
in a crosstabulation.

Finally, to better understand the selected functional network in terms 
of transdiagnostic aspects, we conducted explorative post-hoc analy-
ses and looked at various transdiagnostic factors such as age, person-
ality, sleep, depression and anxiety scores and cognitive performance. 
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To that end, Spearman correlation analyses were run within the TD-
BRAIN+ sample between network score and 12 different transdiagnos-
tic clinical and demographic variables: age, hours of sleep the night 
before the EEG acquisition, scores on the ‘big five’ personality dimen-
sions, scores on the three Depression Anxiety Stress Scale (DASS) sub-
scales, and false positive and negative scores on the auditory oddball 
test (for a description see Supplementary Methods and Materials). The 
significance level was Bonferroni-corrected for the number of variables, 
as well as the number of sex-specific (male vs. female) and age-specific 
(adult vs. non-adult) subgroup analyses, resulting in  = 0.05/(12×4) = 
0.001, and effect sizes of >0.1 were considered relevant. We also exam-
ined fICA scores across time over 10 artifact-free 4-second epochs to 
assess stability of the obtained network (i.e. test-retest reliability) and 
to what degree the network exhibits vigilance or arousal-related chang-
es over time (Arns et al. 2011; Olbrich et al. 2016), and thus served as a 
proxy for vigilance stages. Prior research under resting conditions hints 
at hyperstable vigilance regulation in depression (Hegerl et al. 2011). To 
that end, every first available 4-second epoch, starting within ten con-
secutive timeframes of 10 seconds, was selected for each subject. Con-
sequently, a maximum of ten epochs (since there were ten timeframes) 
per subject were available for the analyses. The intraclass correlation 
coefficient (ICC) was computed, based on an absolute agreement, two-
way mixed-effects model (Hallgren 2012), to assess test-retest reliabil-
ity. A one-way repeated measures ANOVA was performed with time 
(ten levels) as repeated-measures variable, and age-group (five groups in 
years: 5-11; 12-17; 18-29; 30-49; 50+) and sex as between-subjects factor. 
Lastly, the network score slope over all epochs as well as differences be-
tween the first and last epoch were calculated for correlation analyses 
with baseline variables.

RESULTS 

An overview of the baseline demographic characteristics and response 
and remission rates per dataset after EEG preprocessing can be found 
in Table 1. In brief, we included 5,553 participants in total from six inde-
pendent datasets for the analyses. Dataset 1 and dataset 2 included psy-
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chiatric patients and a relatively small number of healthy participants, 
while the other datasets included MDD patients only.

Table 1. Baseline characteristics. Abbreviations: fICA = functional independent component 
analysis; PGS-AR = polygenic score for antidepressant response; AD = antidepressant medi-
cation; rTMS = repetitive transcranial magnetic stimulation; PT = psychotherapy; BDI-II = 
Beck Inventory Index, second version; QIDS = Quick Inventory of Depressive Symptomatol-
ogy; SD = standard deviation.
1 This dataset was used for functional independent component analysis (fICA), but demo-
graphics and clinical data were available for N = 3914 (sex data) and N = 3845 (age data).
2 This is a subset of the total of 1195 participants, for whom preprocessed EEG data and 
genetic data after quality control were available.
3 Number of patients treated with venlafaxine (with/without concurrent PT).
4 N/A as this was a blinded out-of-sample validation; hence self-report scores were unknown 
at the time of analysis, and actual remission/response rates and (normalized) positive pre-
dictive values rates were confirmed by an independent third person.

DISCOVERY ANALYSIS IDENTIFIES 54 COMPONENTS USING ELORETA-FICA

The sample for eLORETA-fICA consisted of 4,045 participants. The 
BIC was used for estimating the number of significant components, 
which indicated 54; hence the fICA was constrained to 54 compo-
nents that explained 98.6% of the total signal variance (see figure 1: 
discovery).

POLYGENIC-INFORMED SELECTION OF THE POSTERIOR ALPHA NETWORK

The sample for PGS association analysis consisted of 722 participants 
(remaining after EEG preprocessing and genetic QC). An association 
was found between PGS-AR and EEG component 1, and no other 

Baseline characteristics  Dataset 1: Dataset 2: Dataset 3: Dataset 4: Dataset 5:    Dataset 6:
   Discovery Selection Translation 1 Translation 2 Validation 1    Validation 2
   (fICA) (PGS-AR) (AD) (rTMS + PT) (AD and/or PT)    (rTMS + PT)
 
Total number of participants  4249 1195 1008 196 195    36
N included in study  40451 7222 535 186 293    36
Women   40% 47% 54% 50% 88%    56%
Mean age (SD), years  28.7 (18.3) 41.9 (13.8) 38.5 (12.6) 43.3 (12.9) 42.5 (15.1)    44.4 (16.2)
Self-report; mean baseline score (SD) N/A BDI-II; QIDS; BDI-II; N/A4    N/A4

    26.5 (14.8) 14.5 (3.7) 30.8 (9.8) 
Remission rate   N/A N/A 36% 55% 21%    47%
Response rate   N/A N/A 52% 66% 28%    61%
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components. This component explained 60.8% of the total EEG 
variance The strongest and most significant association between 
this component and PGS-AR was at PT<5×10-3 in both male and fe-
male participants ( = -0.137; R2 = 1.90%; p = 0.000265; figure S1). We 
therefore used this component for validation analyses.

Figure 2 shows EEG component 1, representing joint deactivation 
and activation of neural activity (only within the alpha frequency 
band) coming from sets of posterior regions that form functional 
spatial-spectral networks. EEG alpha power changes in the parietal 
lobe were inversely correlated with alpha power changes in the oc-
cipital lobe (visual cortex). A high component score was associated 
with more parietal alpha activity, while a low score was associated 
with predominantly occipital alpha activity. We will refer to this 
component as the ‘posterior alpha network’. The individual scores of 
this network positively correlated with age at baseline in all datasets, 
except in dataset 2 used for PGS analysis (no correlation), but not 
with baseline severity (BDI-II or QIDS; figure 2).
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Figure 2. Functional network of the component obtained with eLORETA-fICA. The up-
per map visualizes the posterior alpha network (EEG component 1), using eLORETA-fICA, 
viewed from eight different angles (anterior [A], posterior [P], superior [S], inferior [I], left 
[L], right [R], left view [LV], right view [RV], left hemisphere [LH] and right hemisphere 
[RH]). The component covers alpha activity in different brain regions (A). The two colors 
represent joint neural activation and deactivation: EEG alpha power changes in the parietal 
lobe (red; Brodmann area [BA] 7, 19, 39 and 40) were inversely correlated with EEG alpha 
power changes in the occipital lobe (blue; BA 17, 18 and 19). This contrast becomes clearer 
when the differences (at p<0.01) between the 1000 highest (red) and 1000 lowest (blue) net-
work scores are visualized as in the top-right map (B). Thus, a relatively high network score 
was related to predominantly midline (frontal and parietal) neuronal activity and a rela-
tively low score to predominantly posterior (occipital) activity. The charts below depict the 
relation between the posterior alpha network and age as well as time. There was a positive 
correlation between age and the network score (the older, the higher the network score). This 
correlation was stronger in male participants. Also, the variance of the network score was 
largest in children (the younger, the larger the variance), with the lowest network scores more 
often seen in children (C). There was a small effect of age group on network score changes 
over 10 seconds timeframes, and a large effect was found between age groups (D).
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TRANSLATIONAL ANALYSES IN TWO INDEPENDENT TREATMENT RESPONSE 

DATASETS

The primary outcome for translational analysis (see figure 1: transla-
tion) was categorical remission, the secondary outcome was response.

RELATING THE POSTERIOR ALPHA NETWORK TO ANTIDEPRESSANT MEDI-

CATION OUTCOME

Of the 1,008 (dataset 3) participants, data of 535 were included for 
translational analysis (treated per protocol, sufficient clean EEG and all 
channels available).

First, to examine categorical outcomes, we performed a factorial AN-
COVA with network score as dependent variable. This yielded a signifi-
cant (p = 0.042) remission × type of antidepressant interaction. Repeat-
ing the analysis with remission as fixed factor for SSRIs (escitalopram 
or sertraline) and SNRIs (venlafaxine) separately resulted in a main ef-
fect of remission for venlafaxine (d = 0.410, F = 5.30, p = 0.023), but not 
for escitalopram or sertraline.

Second, a discriminatory analysis was performed: the alpha posteri-
or network alone significantly predicted remission with venlafaxine 
(Wilk’s Lambda, λ = 0.964; Chi-Square, χ2 = 5.933; p = 0.015). The area 
under the curve (AUC) of remission for alpha posterior network (AUC = 
0.623) slightly improved when successively age (AUC = 0.628) and base-
line QIDS (AUC = 0.664) were added to the predictive model (see figure 
S2A). Response data demonstrated similar results overall (see Supple-
mentary Results). There were no mediation effects of age or baseline 
severity.

Subsequently, the optimal network score cut-off point within the ven-
lafaxine group was determined by calculating the maximum Youden 
index for remission, which was J = 0.268 (sensitivity = 63.2%). Classify-
ing patients as ‘remitter’ or ‘nonremitter’ based on this cut-off, resulted 
in a PPV of 48% (nPPV = 138%) and overall predictive value of 63.4% 
(Cramer’s V = 0.255; p = 0.002) for venlafaxine (see Table S1A). Stratifi-
cation of the full sample (i.e. assigning patients treated with an SSRI in 
the opposite direction than venlafaxine users, but based on the cut-off 
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for venlafaxine) resulted in a PPV of 40.9% (nPPV = 112%). The PPV 
within the SSRI group was 37.7% (nPPV = 101%).

RELATING THE POSTERIOR ALPHA NETWORK TO RTMS AND CONCURRENT 

PSYCHOTHERAPY OUTCOME

Of the 196 (dataset 4) participants, data of 186 were included for 
translational analysis (treatment protocol 10-Hz or 1-Hz and not se-
quentially, sufficient clean EEG and all channels available).

First, to examine categorical outcomes, we performed a factorial 
ANCOVA with network score as dependent variable. This yielded a 
significant (p < 0.001) remission × sex interaction but no protocol 
interaction. Repeating the analysis with remission as fixed factor for 
men and women separately resulted in a main effect of remission 
for men (d = 0.495, F = 12.48, p < 0.001), and women (d = -0.682, F = 
16.07, p < 0.001).

Second, a discriminant analysis was performed and revealed that the 
alpha posterior network as single predictor significantly predicted re-
mission (λ = 0.899, χ2 = 9.650, p = 0.002) in women. For men the pre-
dictive value was in the opposite direction for remission (λ = 0.940, 
χ2 = 5.626, p = 0.018). The AUC of remission for the alpha posterior 
network (women: AUC = 0.657; men: AUC = 0.638) improved when 
successively age (AUC = 0.716; AUC = 0.711) and baseline BDI-II (AUC 
= 0.855; AUC = 0.762) were added to the predictive model (see figure 
S2B and S2C). Again, response data overall demonstrated similar re-
sults (see Supplementary Results).

A mediation analysis showed that age was a significant mediator of 
the relation between network score and rTMS + PT remission and 
response in men, while this was not found in women. An ANOVA 
yielded no significant age differences between remitters and nonre-
mitters in both sexes, but a significant age difference between re-
sponders and nonresponders to rTMS + PT in men only (p = 0.019): 
male responders were younger. We found no mediation effects of 
baseline BDI-II score on either remission or response in both women 
and men.



80

The optimal network score cut-off points for remission were deter-
mined, which was J = 0.321 (sensitivity = 92.9%) in women and J = 
0.300 (sensitivity = 78.8%) in men. Classifying patients based on these 
cut-offs resulted in a PPV of 72.6% (nPPV = 131%) and overall predic-
tive value of 65.1% (Cramer’s V = 0.307; p < 0.001) for rTMS + PT (see 
Table S1B). As sensitivity analysis, the same analysis was performed 
for both rTMS protocols separately, resulting in a PPV of 76.5% (nPPV 
= 130%) for 10-Hz and PPV of 70% (nPPV = 132%) for 1-Hz.

Lastly, to investigate if the predictive value of the posterior alpha net-
work was driven by rTMS treatment, psychotherapy or both, ANCO-
VA and discriminant analyses were repeated in an independent sam-
ple of MDD patients treated with psychotherapy (N = 137), but not 
with rTMS or medication. No significant effect nor trend towards 
significant results were found; we thus assume effects were not driv-
en by psychotherapy alone.

BLINDED OUT-OF-SAMPLE VALIDATION OF THE POSTERIOR ALPHA  

NETWORK

We performed two blinded (treatment outcome not known by clas-
sifying researcher) out-of-sample validations based on the cut-off 
point for venlafaxine and rTMS + PT in two independent datasets to 
validate and replicate the previous findings.

VENLAFAXINE

In the first independent out-of-sample dataset of 29 MDD patients 
treated with venlafaxine with an overall remission rate of 21% (data-
set 5), blinded classification (remission vs. nonremission) based on 
the posterior alpha network score, resulted in a PPV of 33% (nPPV 
= 161%) and overall predictive value of 69% for venlafaxine, which 
was mainly driven by a small subgroup (N = 9) of patients receiving 
psychopharmacotherapy only (PPV = 75%, nPPV = 225%, and overall 
predictive value = 89%).
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RTMS 1-HZ AND CONCURRENT PSYCHOTHERAPY

Another independent out-of-sample validation was conducted, con-
sisting of 36 MDD patients receiving 1-Hz rTMS + PT with a group 
remission rate of 47% (dataset 6). Remission prediction based on the 
posterior alpha network in a blinded fashion resulted in a PPV of 
31.6% (nPPV = 66.9%).

THE SIGNIFICANCE OF THE POSTERIOR ALPHA NETWORK

To explore a possible relationship between the network and other 
variables, bivariate correlation analyses between posterior alpha net-
work score and baseline variables resulted in significant correlations 
(p < 0.001) at  > 0.1 with age ( = 0.381), hours of sleep ( = -0.251), 
oddball false negatives ( = -0.146), oddball false positives ( = -0.144) 
and the personality trait extraversion ( = -0.107). All correlations, 
except for age, were driven by children and teenagers (age <18 years) 
and became nonsignificant in adults only, or when (partial correla-
tion) analyses were covaried for age. The Spearman’s rank correla-
tion coefficient for age was equal in adults ( = 0.196) and nonadults  
( = 0.192), but larger in male ( = 0.462) compared to female ( = 
0.237) patients for all ages (see figure 2C). Reliability analysis yield-
ed an ICC of 0.976 (95% confidence interval 0.974-0.977). One-way 
repeated measures ANOVA showed only a significant main effect of 
age group (F = 71.4; p < 0.001) and effect of time on age (F = 1.72; 
p = 0.005; see figure 2D), and no effects of sex (p > 0.05). Finally, a 
follow-up correlation analysis to explore a time effect revealed no 
significant correlation (p < 0.001) between baseline variables and the 
slope of ten consecutive timeframes. Nor was a significant difference 
between the first and last timeframe for both sexes detected.
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DISCUSSION 

In this study we identified a posterior-alpha ageing brain network 
that was associated with remission to two different evidence-based 
treatments for MDD, in a drug-class specific and sex-specific man-
ner, providing potential for treatment stratification purposes (Arns 
et al. 2022). The network was significantly associated with remission 
to venlafaxine, resulting in a nPPV of 138%, as well as rTMS + PT, 
but in the opposite direction for women relative to men, yielding an 
overall nPPV of 131%. Remission to venlafaxine was associated with a 
high network score in both women and men, while this association 
was not found for escitalopram or sertraline. Drug-specific EEG as-
sociations have been uncovered before. For example, EEG abnormal-
ities were shown to be associated with drug-specific nonresponse to 
venlafaxine and escitalopram, but not sertraline (Arns, Gordon, and 
Boutros 2017), while left frontal alpha asymmetry in women is relat-
ed to poorer response to both escitalopram and sertraline, but not to 
venlafaxine (Arns et al. 2016). Although mechanistic insights into the 
biological underpinnings of EEGs are largely unknown, our findings 
hint that activity in this network may be related to antidepressants’ 
mode of action, since venlafaxine is a reuptake inhibitor of both se-
rotonin and norepinephrine, while the other two antidepressants 
selectively inhibit serotonin.

Remission to rTMS + PT was differentially associated with a high 
network score in men and low network score in women, but nei-
ther rTMS protocol (1- or 10 Hz) specific association was found nor 
an effect for a psychotherapy only sample, suggesting the effects 
to be general to rTMS. These findings hint at different underlying 
mechanisms of action of rTMS on neural activity for men com-
pared to women, which is supported by prior research reporting an 
opposite pattern regarding posterior alpha asymmetry in men and 
women with MDD (Stewart et al. 2011), and sex-specific differenc-
es in rTMS response (Huang et al. 2018; Kedzior, Azorina, and Reitz 
2014; Sackeim et al. 2020). Out-of-sample validation confirmed our 
findings for venlafaxine, but not for rTMS. This inconsistency may 
be related to the relatively small sample size of available data (given 
male and female predictions were in opposite directions, effectively 
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halving the available sample) and thus the rTMS finding awaits con-
firmation in future samples.

The posterior alpha network we described explained >60% of the to-
tal signal variance of the EEG and was reflective of alpha oscillations 
in the parietal lobe, and inversely related to alpha oscillations in the 
occipital lobe. A high network score was related to parietal/midline 
alpha activity and a low score to occipital activity, thus an increase 
in network score from low to high may reflect a shift of alpha power 
from posterior to more anterior cortical locations. This finding sup-
ports prior research showing that cortical maturation, which consists 
of an increase of faster oscillatory activity (including alpha) togeth-
er with a decrease of slow activity, proceeds strictly from posterior 
to anterior regions, probably indicating a decrease in magnitude of 
posterior alpha rhythms during physiological aging (Mason, Barry, 
and Clarke 2022; Clarke et al. 2001a; Chiang et al. 2011; Babiloni et 
al. 2006).

Post-hoc, we found a robust positive correlation between the poste-
rior alpha network score and age, but no other baseline variables in 
adults (after co-varying for age effects). Correlations with sleep, false 
negatives and positives on the oddball test and extraversion were 
all negative and driven by young patients and age. It is possible that 
some or all of these variables, such as sleep, are actually age-depen-
dent, rather than directly related to the network. 

In previous studies, higher age has been associated with non-re-
sponse to various treatments, including rTMS, possibly mediated by 
treatment-resistance and episode recurrence, but results remain in-
conclusive (Carlo, Calati, and Serretti 2016; Aoun et al. 2022; Figiel et 
al. 1998; Krepel et al. 2019). Our results cannot be simply explained 
by age, because of several factors. First, we controlled for age in all 
analyses. Second, no significant age differences were found between 
remitters and nonremitters. Third, age was not a mediator of the re-
lationship between the network score and venlafaxine treatment- or 
rTMS outcome in women. However, there was a mediation effect of 
age with regards to rTMS outcome in men. Looking into the relation 
between age and network score on the one hand, and age and rTMS 
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response on the other, we found that male responders had a higher 
mean network score and were on average younger than nonrespond-
ers. This is the opposite of what is expected, since a higher network 
score was related to a higher age.

Differences in (overall) EEG alpha power and (frontal as well as pos-
terior) alpha asymmetry between responders and nonresponders to 
antidepressants have been described, suggesting alpha activity is a 
biological substrate for clinical response in patients with MDD (Ten-
ke et al. 2011; Bruder et al. 2008; Bruder, Tenke, and Kayser 2013; 
Bruder et al. 2001). A previous study using LORETA found increased 
alpha activity in depressed patients at parietal and occipital sites 
(Grin-Yatsenko et al. 2010), which is consistent with other studies 
describing an (asymmetric, mostly right-hemispheric) elevated alpha 
in posterior regions in adult depressed patients (Flor-Henry, Lind, 
and Koles 2004; Henriques and Davidson 1990; Fingelkurts et al. 
2006). All these findings highlight the implication of age-related and 
sex-specific posterior alpha power alterations for depression and an-
tidepressant treatment effects.

The alpha network described here showed only few similarities with 
the functional brain network identified in our proof-of-concept 
study (Meijs et al. 2022), that was a sex-specific, nontreatment-spe-
cific, one-directional predictor for treatment outcome in male MDD 
patients. Here, the most prominent observed oscillatory network 
activity were diffuse cortical slow wave (delta and theta) oscilla-
tions. Activity within higher frequencies (including alpha) was solely 
present at left occipital regions. The differences may be the result 
of differences between eLORETA-fICA datasets. The sample in the 
present study is four-fold larger and includes the full lifespan instead 
of adults only. Moreover, while both samples are heterogeneous, 
the psychiatric background of patients in both samples partly dif-
fers (in-patients vs. out-patients). Another explanation is the use of 
high-density EEG for eLORETA-fICA in the previous study, resulting 
in less well-defined spatial components, hampering interpretation. 

A theory of the pathogenesis of MDD that is supported by prior re-
search under resting conditions proposes the regulation of wakeful 
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EEG-vigilance stages –which is considered to be a state-dependent 
trait (Hegerl et al. 2008)– is ‘hyperstable’ in depression. MDD pa-
tients show less (and later) declines into lower EEG-vigilance stages 
than healthy controls, which was even observed in a relative short 
eyes-closed period of two minutes (Hegerl et al. 2011; Ulke et al. 
2018). Furthermore, arousal parameters have been associated with 
response to antidepressant medication and seem to be potential bio-
markers for the improvement of MDD treatment outcome (Olbrich 
et al. 2016). In line with the vigilance/arousal hypothesis in MDD, we 
examined whether the posterior alpha network score changed over 
ten EEG recording intervals within two minutes, and whether it was 
predictive of the stage of vigilance that could explain the association 
of the network score with the antidepressant outcome. The network 
was found to be highly stable over time, as demonstrated by the very 
high ICC = 0.98. The stability of the posterior alpha network and 
its association with genetics indicates this network is a trait rather 
than a state feature. Prior research found that posterior EEG alpha 
amplitude at rest is temporally stable in adulthood and therefore in-
dicative of an individual trait (Tenke et al. 2018). On the other hand, 
since we found a relation with age which suggests the alpha network 
is a state characteristic, it may also reflect neurodevelopmental char-
acteristics, with possible predictive value for lifetime depression and 
treatment outcome. A recent study that supports this hypothesis 
found increased posterior alpha asymmetry, but reduced overall al-
pha power in depressed female adolescents, suggesting developmen-
tal dissimilarities regarding the posterior alpha-MDD relationship, 
suggesting that alpha oscillations are more variable during periods of 
neurodevelopment and a promising neurophysiological indicator of 
MDD in adolescents (Umemoto et al. 2021). More research into un-
derlying EEG characteristics in different patient groups and healthy 
controls is warranted for examining the clinical predictive value of 
these measures and evaluating whether brain arousal is particularly 
characteristic for responders to antidepressant treatment.

Strengths of this study include the use of multiple large independent 
samples, as well as a lifespan perspective and combining genetics 
with a neurophysiology approach, and the blinded out-of-sample val-
idations in independent samples. We used a heterogeneous dataset, 
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that consisted of patients with various psychiatric disorders across a 
broad age spectrum. This allowed for a data-driven data-reduction 
into independent components, and subsequent PGS-informed selec-
tion of one component that would be transdiagnostic and translate 
better to a normative dataset, rather than a dataset of adult MDD 
patients only. Moreover, the eLORETA-fICA method is applicable 
to all EEGs independent of amplifier, electrode configuration or 
number of electrodes. However, the interpretation of the functional 
networks obtained is difficult and limited by visualization of neural 
activity with low resolution and within predefined frequency bands. 
Other limitations of the present study include the relatively small 
sample sizes for the out-of-sample validations and the lack of a pla-
cebo-controlled arm as part of the open label setup. However, the op-
posite effects for men and women in the rTMS group argue against a 
notion of placebo-effects. We were able to replicate the findings for 
venlafaxine, but not for rTMS + PT. A possible reason for this lack of 
replication could be the lack of power due to the small sample sizes 
(mainly as a result of dividing samples based on sex and remission 
versus nonremission), and a mediation effect of age in men. A fu-
ture larger sample is required to validate the findings. Also, the out-
of-sample rTMS + PT sample consisted of patients receiving only 1 
Hz rTMS and thus results must be interpreted with caution and re-
quire further study. Finally, the network was significantly associated 
with remission to venlafaxine, but not the two SSRIs included in our 
study. However, stratification of the full medication sample resulted 
in an nPPV of 112%. 

In conclusion, we identified a highly stable EEG posterior alpha net-
work that is related to polygenic liability for antidepressant response 
as well as age, and is associated with remission to two evidence-based 
treatments for MDD.
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SUPPLEMENTARY INFORMATION

SUPPLEMENTARY METHODS AND MATERIALS
EEG RECORDINGS

During eyes-closed EEG recordings, the participants were instructed to 
sit still for the duration of the recording without thought instructions. 
EEG data of TDBRAIN+ (dataset 1) were acquired for two minutes from 
26 channels, based on the 10–10 electrode international system using a 
Compumedics Quickcap or ANT-Neuro Waveguard Cap with sintered 
Ag/AgCl electrode, at a sampling rate of 500 Hz. The EEG was recorded 
with a virtual ground and offline referenced to averaged mastoids (A1 
and A2) with a ground at AFz. Horizontal eye movements were record-
ed with electrodes placed 1.5 cm lateral to the outer canthus of each 
eye. Vertical eye movements were recorded with electrodes placed 3 
mm above the middle of the left eyebrow and 1.5 cm below the middle 
of the left bottom eyelid. EEG recordings for dataset 2 were acquired 
from 65 channels of the Electrical Geodesics Incorporated (EGI; Mag-
stim, UK) system, and were recorded for three minutes during eyes 
closed condition (see Meijs et al. (Meijs et al. 2022) for further details). 
The acquisition of two-minutes resting-state EEG recordings of the 
other datasets from a 26-channel system of the Neuroscan NuAmps 
(Compumedics, Australia) was similar to the EEG recordings of TD-
BRAIN+.

OTHER DATA TDBRAIN+

In addition to the raw EEG recordings, the TDBRAIN+ database (for 
more information see Van Dijk et al. (Van Dijk et al. 2022)) also con-
tains demographic and clinical (such as the results from questionnaires) 
data, and behavioral measures (such as the results from an auditory 
oddball task) that were performed after the resting-state conditions. 
For the oddball task participants were presented with a series of low- 
(500 Hz) and high- (1000 Hz) pitched tones (50 ms, 75 dB) with an in-
terstimulus interval of 1 s. Participants were instructed to respond to 
the high pitched ‘target’ tone (60 targets out of 340 stimuli) with both 
index-fingers.
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SUPPLEMENTARY RESULTS
RESULTS FOR RESPONSE

Supplementary results for venlafaxine. We performed an ANCOVA with 
EEG component score as dependent variable and response and sex as 
fixed factors, and age and baseline QIDS as covariates. This yielded a 
significant (p = 0.026) response × type of antidepressant interaction. 
Repeating the analysis with response as fixed factor for SSRIs and 
SNRIs separately resulted in a main effect of response for venlafaxine 
(d = 0.352, F = 6.948, p = 0.009), but not for escitalopram or sertraline. 
A discriminant analysis was performed within the venlafaxine group; 
the EEG component 1 alone significantly predicted response (λ = 
0.970, χ2 = 4.759, p = 0.029). 

Supplementary results for repetitive transcranial magnetic stimula-
tion (rTMS). We performed an ANCOVA with EEG component 
score as dependent variable and response and sex as fixed factors, 
and age and baseline BDI-II as covariates. This yielded a signifi-
cant (p < 0.001) response × sex interaction; no protocol interac-
tion. Repeating the analysis with response as fixed factor for men 
and women separately resulted in a main effect of response for men  
(d = 0.499, F = 12.871, p < 0.001), and women (d = -0.597, F = 6.894, p = 
0.010). A discriminant analysis was performed and revealed that the 
EEG component 1 as single predictor significantly predicted response 
(λ = 0.939, χ2 = 5.702, p = 0.017) in women. For men the predictive 
value was in the other direction for both response (λ = 0.938, χ2 = 
5.751, p = 0.016). 

RESULTS HELD-OUT OF SAMPLE VALIDATION

We performed an out-of-sample validation in a held-out sample as 
a first-level validation, where the validation in an independent data-
set was considered a second-level validation to ensure robustness. 
Therefore, within dataset 3 and 4 we determined the optimal cut-off 
in a training set (~70% of patients, randomly selected), which result-
ed in a PPV of 47% (nPPV = 137%) for venlafaxine and 70% (nPPV = 
125%) for rTMS, and replicated these findings in the validation set 
(the remainder ~30% of patients): PPV=50% (nPPV = 142%) for venla-
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faxine and PPV = 80% (nPPV = 145%) for rTMS.
Note: results for venlafaxine were also replicated in an independent 
dataset, while this was not the case for rTMS. With regard to the 
rTMS samples (dataset 4 and 6), we did not expect considerable dif-
ferences between these samples, since both were obtained from the 
same clinic and had a fairly heterogeneous patient population with 
comorbidities. However, there might be some confounding differ-
ences, such as difference in number of sessions. 

SUPPLEMENTARY FIGURES AND TABLES

Figure S1. Polygenic regression model for antidepressant response. The graphs show the ex-
plained variance (R2 as %) of the individual score on EEG component 1 by PGS-AR (polygenic 
score for antidepressant response [improvement]; blue bars), and corresponding p-value (pre-
sented as -log; orange dot) on the x-axis per p-value threshold (PT) on the y-axis. The Bon-
ferroni-corrected significance level is also presented (, grey dotted line). The graph shows 
a polygenic signal: the more lenient the PT is, the more variance is explained by the PGS-AR 
(and the more significant its p-value is: p < 0.01 for R2 > 1%) in general. The optimal PT sur-
vives Bonferroni-correction (PT < 5•10-3, R2 = 1.90%).
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Figure S2. Receiver operating characteristic (ROC) curves for treatment remission. ROC 
curves are plotted for male and female depressed patients treated with venlafaxine (A), and 
for rTMS in women (B) and in men (C) with MDD. The colors represent different predictive 
models. The first model (light blue) shows the discriminative performance of the EEG com-
ponent 1 alone, the second improved model (blue) shows the performance when age is added 
as predictor, and the third model (dark blue) represents the most optimal model including 
all three predictors: component 1, age and baseline depressive symptom severity. Note that 
the model minimally improves after adding age and baseline severity successively to the 
model as regards to venlafaxine, while the model clearly improves for rTMS after adding 
these predictors

Table S1. Cross tables: prediction based on network score cut-offs for remission.
Cross tables for remission based on optimal cut-offs for venlafaxine (A) and rTMS/psycho-
therapy (B). 
0 = no remission; 1 = remission.
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ABSTRACT

Psychiatric disorders are traditionally classified within diag-
nostic categories, but this approach has limitations. Research 
Domain Criteria (RDoC) constitute a research classification 

system for psychiatric disorders based on dimensions within do-
mains that cut across these psychiatric diagnoses. The overall aim 
of RDoC is to better understand mental illness in terms of dysfunc-
tion in fundamental neurobiological and behavioral systems, leading 
to better diagnosis, prevention and treatment. A unique electroen-
cephalographic (EEG) feature, referred to as spindling excessive beta 
(SEB), has been studied in relation to impulse control and sleep, as 
part of the arousal/regulatory systems RDoC domain. Here, we study 
EEG frontal beta activity as a potential transdiagnostic biomarker ca-
pable of diagnosing and predicting impulse control and sleep prob-
lems. We show in the first dataset (N = 3,279) that the probability of 
having SEB, classified by a deep learning algorithm, is associated with 
poor sleep maintenance and low daytime impulse control. Further-
more, in two additional, independent datasets (iSPOT-A, N = 336; 
iSPOT-D, N = 1,008), we revealed that conventional frontocentral 
beta power and/or SEB probability, referred to as Brainmarker-III, is 
associated with a diagnosis of attention deficit hyperactivity disorder 
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(ADHD), with remission to methylphenidate in children with ADHD 
in a sex-specific manner, and with remission to antidepressant med-
ication in adults with a major depressive disorder in a drug-specific 
manner. Our results demonstrate the value of the RDoC approach in 
psychiatry research for the discovery of biomarkers with diagnostic 
and treatment prediction capacities.

INTRODUCTION 

Psychiatric disorders are often conceptualized as classifications on 
the basis of symptoms, defined by the Diagnostic and Statistical 
Manual of Mental Disorders (DSM (APA 2013)). This approach of 
classifying patients into diagnostic categories provides benefits such 
as reliability and a common terminology. However, The National 
Institute of Mental Health proposed the Research Domain Crite-
ria (RDoC) as a research classification system for mental disorders 
(Cuthbert and Insel 2013). This system is built on fundamental di-
mensions of neurobiology and behavioral systems, which differ from 
and cut across the existing DSM-5 categories that do not adequate-
ly reflect these systems. RDoC aims to enhance our understanding 
of mental health by considering subthreshold symptoms and en-
abling research into the underlying systems. This approach allows 
for a more nuanced and multi-dimensional perspective on mental 
illness, facilitating improved diagnosis, prevention, and treatment 
through a comprehensive exploration of dysfunction across various 
dimensions. The five domains of RDoC include dimensions that can 
be measured and provide constructs for validation. Moreover, they 
are all transdiagnostic, as disruptions in these dimensions could be 
observed in psychiatric patients independent of their DSM classifi-
cation. In a prior study from Arns et al. (Arns, Swatzyna, et al. 2015), 
researchers looked into the relationship between dimensions of the 
arousal/regulatory domain of the RDoC within a large, heteroge-
neous outpatient psychiatric population. The results indicated that 
sleep maintenance problems mediate impulse control, which is, in 
turn, associated with a unique electroencephalography (EEG) feature 
called spindling excessive beta (SEB). Furthermore, SEB is most likely 
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a consequence of the sleep problems. Therefore, this study concludes 
that frontocentral SEB could be considered a state marker caused by 
sleep difficulties with concurrent impulse control problems.

Frontocentral SEB is defined as synchronous activity in the beta 
range that is characterized by its spindle morphology with an an-
terior emphasis (Johnstone, Gunkelman, and Lunt 2005). Relatively 
little is known about (excessive) beta spindling. It is observed as a 
medication effect, particularly of sedatives, such as benzodiazepines 
(Johnstone, Gunkelman, and Lunt 2005; Blume 2006). Oscillatory 
activity in the beta range (15-25 Hz) is generally known to reflect a 
state of alertness or hyperarousal, supported by its association with 
attention, perception and cognition. Furthermore, elevated beta ac-
tivity levels observed in patients with insomnia suggest that insom-
nia may be characterized by central nervous system hyperarousal 
(Perlis et al. 2001). Frontocentral SEB, however, might be a reflection 
of hypoarousal, which is supported by an early study that found beta 
spindles to occur during drowsiness and in sleep stage 1 (Kubicki and 
Ascona 1983). 

The association between the presence of SEB and impaired impulse 
control levels was replicated in a recent study, encompassing atten-
tion-deficit/hyperactivity disorder (ADHD) and insomnia patient 
groups, implying that SEB serves as a marker for impulse control 
problems (Krepel et al. 2021). Interestingly, a relation between sleep 
and frontocentral SEB could not be established in this study using 
subjective questionnaires for sleep problems.

The ADHD group is of particular interest as a study population 
in the context of impulse control problems, because impulsivity 
is one of the primary symptoms of ADHD, and children or adults 
are only diagnosed if they show sufficient primary symptoms (APA 
2013). Prevalence rates of (spindling) excessive beta range between 
13 and 20% in the ADHD population (Chabot and Serfontein 1996; 
Clarke et al. 1998; 2001c) and evidence suggests that these patients 
respond well to stimulant medication (Chabot et al. 1999; Clarke et 
al. 2003). A study of children with ADHD and matched healthy con-
trols, demonstrated that the prevalence of different EEG phenotypes 
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was comparable between the two groups, including frontocentral 
SEB (Arns et al. 2008). Although this study was based on a relatively 
small and heterogenous sample, the findings suggest SEB might be a 
transdiagnostic EEG phenotype. 

Another psychiatric disorder of interest in the context of impulsivity 
is major depressive disorder (MDD). Although impulsivity is not a 
symptom of MDD according to the DSM, it is a heterogenous psychi-
atric disorder and several prior RDoC studies have proposed a cogni-
tive subtype of MDD (Etkin et al. 2015; Hack et al. 2023). Hence, we 
include MDD to examine how impulse control (a cognitive process) 
could potentially influence our understanding of the heterogeneity 
within MDD.

SEB as a transdiagnostic marker has an important weakness: it is a 
subjective marker as the classification of SEB depends on visual in-
spection of the EEG. This is time-consuming with possibly low in-
ter-rater reliability. The first aim of the present study was therefore 
to automate and operationalize SEB as we have done in previous 
work (Putten, Olbrich, and Arns 2018). Here, we used a ‘top-down 
and bottom-up’ approach to operationalize SEB. Top-down we per-
formed a data-driven data-reduction analysis at source level activity, 
which was not limited to the beta range but includes 0.5 to 30 Hz 
oscillations. This broad spectral range was chosen for validation that 
impulse control is associated with frontal beta activity. Bottom-up 
we tested two operationalizations for frontal beta activity as poten-
tial transdiagnostic biomarker: conventional frontocentral beta pow-
er and a deep learning model classifying frontocentral SEB (‘Brain-
marker-III’). Secondly, in the ‘mechanistic validation phase’ (Hartung, 
Hoffmann, and Stephens 2013), we focused on replicating the before-
mentioned relation between frontal beta activity, sleep and impulse 
control, to better understand the underlying biological mechanism of 
this triangular relationship (Arns, Swatzyna, et al. 2015). Then, in the 
‘translational phase’, we explored potential diagnostic and prognostic 
capabilities of frontal beta activity, as this is of important clinical rel-
evance. The latter phase involved three different samples: one includ-
ing children with ADHD, two including adults with MDD. Finally, we 
combined these predictions to develop Brainmarker-III. Prior work 
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already developed an individual alpha peak frequency (iAPF) based 
treatment stratification biomarker (Brainmarker-I), which aids to dif-
ferentially inform stratification to two ADHD treatments and various 
antidepressant treatments in MDD (Voetterl et al. 2023; Voetterl et 
al. 2022). Furthermore, frontal alpha asymmetry (Brainmarker-II) is a 
differential predictor of antidepressant response robust to state and 
drug effects (Van der Vinne et al. 2019). The final goal of this study 
was to explore the diagnostic and treatment predictive capabilities of 
Brainmarker-III within ADHD and MDD cohorts.

METHODS AND MATERIALS
DATASETS

DATASET 1

This dataset consists of data obtained from the Two Decades-Brain-
clinics Research Archive for Insights in Neurophysiology (TDBRAIN), 
supplemented with data from other clinics that used identical re-
cording details (TDBRAIN+), and contains clinical lifespan (5-89 
years) resting-state eyes-closed EEG data complemented with rele-
vant clinical and demographic data of a heterogeneous collection of 
patients and healthy participants. The dataset (version 7) includes 
4,691 participants in total (mean age: 30.33 ± 18.18; 61% adult; 57% 
male). A subsample of MDD patients treated with transcranial mag-
netic stimulation (TMS; see dataset 4 below) was used for the transla-
tional analysis, thus these data were excluded from the development 
phase. The open access TDBRAIN dataset is freely available at www.
brainclinics.com/resources, with all data recorded at Research Insti-
tute Brainclinics (Brainclinics Foundation, Nijmegen, The Nether-
lands (Van Dijk et al. 2022)). All participants (or their guardians when 
underaged) provided written informed consent.

Data for discovery/exploration of EEG parameters with predictive 
capacity concerning impulsivity consisted of a heterogenous sample 
obtained from the TDBRAIN+ (Impulsivity sample), which included 
all participants of whom complete task data for the continuous per-
formance task (explained later) were available (N = 3,279; mean age: 
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29.5 ± 17.5; 61.5% adult; 59% male). Data for transdiagnostic mecha-
nistic validation also consisted of a sample from the TDBRAIN+ (Ac-
tigraphy sample), and included all adults of whom actigraphy mea-
surements were available. This resulted in a sample of adult patients 
with a variety of (psychiatric) disorders, but the majority consisted of 
ADHD, MDD, obsessive-compulsive disorder and insomnia. The Ac-
tigraphy sample partly overlapped with the Impulsivity sample (41%), 
as for these participants both impulsivity and actigraphy data were 
available.

DATASET 2

This sample was obtained from the international Study to Pre-
dict Optimized Treatment for ADHD (iSPOT-A), an international, 
multi-center, prospective open-label trial, which enrolled 336 chil-
dren and adolescents with a formal diagnosis of ADHD (mean age: 
11.9 ± 3.3; 73% male) and 158 healthy children (mean age: 12.2 ± 3.2; 
71% male). Data were used for translational purposes. Symptom se-
verity was established at baseline and after six weeks of treatment 
with methylphenidate using the clinician rated ADHD Rating Scale 
IV (ADHD-RS-IV). All guardians of the participating children provid-
ed written informed consent. Details about this sample have been 
published elsewhere (Arns et al. 2018). 

DATASET 3

This sample was obtained from the international Study to Predict 
Optimized Treatment in Depression (iSPOT-D), an internation-
al multi-center, randomized, prospective open-label trial (phase-IV 
clinical trial). This study, also included for translation of findings to 
symptom severity and treatment response, consisted of 1008 patients 
(mean age: 38.6 ± 12.6; 58% female) diagnosed with non-psychotic 
MDD who were randomized to one of the selective serotonin re-
uptake inhibitors escitalopram or sertraline, or to the serotonin and 
norepinephrine reuptake inhibitor venlafaxine. The study protocol 
was approved by the institutional review boards at all of the partici-
pating sites and this trial was registered with ClinicalTrials.gov under 
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id NCT00693849. All participants provided written informed con-
sent. At baseline and after eight weeks of treatment patients filled 
in the Quick Inventory of Depressive Symptomatology (QIDS). For 
treatment response analysis, only data from participants who com-
pleted eight weeks of randomized medication treatment (‘per pro-
tocol’ sample) were included. Details about this sample have been 
published elsewhere (Arns et al. 2016).

DATASET 4

This sample of 196 patients (mean age: 43.2 ± 12.9; 51% female) were 
diagnosed with non-psychotic MDD and were treated with high-fre-
quency TMS (10-Hz left dorsolateral prefrontal cortex, DLPFC) or 
low-frequency TMS (1-Hz right DLPFC); a minority received both 
1-Hz and 10-Hz sequentially. This dataset is part of the TDBRAIN+. 
All patients completed at least ten sessions of treatment and com-
pleted the Beck Depression Inventory II (BDI-II) at baseline and at 
the last session (on average session 21). Concurrent with TMS, pa-
tients received psychotherapy. Details about this sample are de-
scribed elsewhere (Krepel et al. 2019).

EEG RECORDINGS

All resting-state eyes closed EEG recordings (two minutes) were ac-
quired from the same hardware platform using a 26-channel system 
of the Neuroscan NuAmps, Quickcap or ANT-Neuro Waveguard Cap 
(Compumedics, Australia) at a sampling rate of 500 Hz. During the 
recordings subjects were instructed to close their eyes, sit still and 
relax. Data were recorded by the following electrodes: Fp1, Fp2, Fz, 
F3, F4, F7, F8, FCz, FC3, FC4, C3z, C3, C4, CPz, CP3, CP4, Pz, P3, P4, 
P7, P8, T7, T8, Oz, O1, O2. Electro-oculography (EOG) was measured 
by electrodes placed 3 mm above the left eyebrows and 1.5 cm below 
the left bottom eye-lid, and 1.5 cm lateral to the outer canthus of each 
eye respectively. 
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EEG PRE-PROCESSING AND ANALYSIS

For cleaning of the TDBRAIN+ data, a previously published automat-
ic pre-processing pipeline (in Python) was used that is described by 
Van Dijk et al. (Van Dijk et al. 2022); available for download at www.
brainclinics.com/resources. In short, EEG data was demeaned and 
bandpass-filtered between 0.5 to 100 Hz and the notch-frequency 
of 50 Hz was removed. The bipolar EOG was computed and blinks 
were removed from the EEG data using a regression method (Grat-
ton, Coles, and Donchin 1983).  Artifact signals were detected and if 
a channels’ signal contained artifacts for more than 66% of the mea-
surement it was repaired using a Euclidian distance weighted average 
of at least three neighboring channels. Data were divided into 2-sec-
ond segments for frequency analysis and training the deep learning 
algorithm. Data where >66% of segments contained artifacts were 
discarded from further analysis. 

FUNCTIONAL NETWORK ANALYSIS (TOP-DOWN)

A functional independent component analysis (fICA), was performed 
in a prior study using exact Low Resolution Brain Electromagnetic 
Tomography (eLORETA) for estimating the cortical source distribu-
tion of electric neuronal activity, as described by Meijs et al. (Meijs et 
al. 2024). In this case, data were divided into 4-second segments. The 
eLORETA method is a discrete, three-dimensional (3D) distributed, 
linear inverse solution, with the property of exact localization to test 
point sources, yielding images of current density with exact local-
ization, albeit with low spatial resolution (Pascual-Marqui 2007). By 
means of eLORETA-fICA, previously described as a data-driven da-
ta-reduction approach (Meijs et al. 2022; Gerrits et al. 2019; Meijs et 
al. 2024), a total of 54 components (i.e. functional networks), within 
a bandwidth ranging from the delta to gamma frequency band, were 
extracted from a sample (N = 4,045) obtained from TDBRAIN+. Every 
participant received a score (or component weight) for each func-
tional network, indicating how active a specific network is in that 
participant. For each subject in each dataset, 54 component scores 
were obtained, which were used in the statistical analyses.
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DEVELOPMENT OF BRAINMARKER-III (BOTTOM-UP)

Two metrics were tested as potential objective transdiagnostic impul-
sivity biomarker (Brainmarker-III).
1. Frontocentral average beta power. The oscillatory power in the 

beta-range (14.5 to 30 Hz, on 2-second artefact-free segments) was 
calculated using the python package MNE-Python (Gramfort et 
al. 2013). Power in this band was computed for nine frontocentral 
electrodes (F3, Fz, F4, FC3, FCz, FC4 C3, Cz and C4) using a multi-
taper analysis with 7 cycles and a time-bandwidth of 2. The abso-
lute mean beta power over these nine electrodes, averaged over all 
artifact-free segments, was calculated. We will use the term "beta 
power" to denote this metric.

2. SEB probability. To develop an algorithm that could detect fron-
tal SEB, a convolutional neural network (CNN) model was trained 
since that type of model previously was successfully used for the 
analysis of EEG in several studies (Tjepkema-Cloostermans, Car-
valho, and Putten 2018; Putten, Olbrich, and Arns 2018). See Sup-
plementary Methods for details on the development of this model. 
If >5% of the segments (prominence) had >50% chance (probability) 
of containing SEB, a participant’s EEG was classified as containing 
SEB. The model was able to classify participants EEGs containing 
SEB with an average accuracy of 0.70, a sensitivity of 0.78 and a 
specificity of 0.70. For the current study the automatically classi-
fied average segment probability of containing SEB per subject was 
used as feature in the following analyses.

OBJECTIVE BEHAVIORAL MEASUREMENTS

To prevent (self) reporting bias (including possible differences be-
tween disorders due to different questionnaires) we focused on ob-
jective behavioral measures to operationalize impulse control and 
sleep problems. Impulse control was defined by false positive (FP) 
errors (commission errors) on a continuous performance task, ob-
tained from a visual 1-back working memory (WM) task (Van Dijk et 
al. 2022), performed after the resting state conditions. The number 
of FP errors on the WM task (WM-FP) was used as continuous mea-
sure. For dichotomous tests, participants were considered to have 
low impulse control at WM-FP > 1 and normal impulse control at  
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WM-FP = 0 (similar to prior work (Gerrits et al. 2019)). Datasets with 
>15 WM-FP were considered outliers (who misunderstood task-in-
structions) and removed. Sleep maintenance problems – including 
wake after sleep onset (WASO) and number of awakenings during 
sleep – were objectively assessed by actigraphy (Actiwatch, Condor 
ActTrust), assessed for at least 7 days prior to treatment.

STATISTICAL ANALYSES 

All analyses were performed using IBM SPSS Statistics 27. Age was 
added as a covariate where appropriate. If effects between male and 
female participants were significantly different or in opposite direc-
tion, analyses were performed stratified by sex. Sensitivity analyses 
within subgroups (males, females, adults or children) were performed 
to reveal sex-specific and age-specific differences that could poten-
tially average out main effects on the total sample.
Since the data were not normally distributed, non-parametric cor-
relation analysis (Spearman) was performed to asses associations. 
The statistics of the main analyses were corrected for the number 
of tests (Bonferroni), and for significant effects, effect sizes were  
computed. The significance level for follow-up analysis was set at  
 = 0.05. The a priori set hypothesis was that EEG beta measures 
were associated with impulse control problems on the one hand and 
sleep maintenance problems on the other.

First (discovery/exploration phase), we examined whether there was 
an association between impulse control and one of the 54 networks 
derived from the aforementioned eLORETA-fICA analysis (top-
down) for validation purposes. The eLORETA-fICA was not used 
in subsequent analyses. A One-Way ANCOVA, with age as a covari-
ate, was conducted to investigate differences in beta power and SEB 
probability between individuals with low and normal impulse con-
trol. Correlation analyses between WM-FP and the two metrics, were 
done in addition to the binary tests.
Second (mechanistic validation phase), we focused on sleep mainte-
nance problems (WASO and awakenings) within the Actigraphy sam-
ple, and investigated the triangular relationship of impulse control, 
sleep and frontal beta activity using correlation analyses.
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Third (translation phase), analysis focused on translating the findings 
for diagnostic or prognostic use. Therefore, the associations between 
beta power or SEB probability and baseline clinical data (ADHD-RS-
IV for ADHD and QIDS or BDI-II for MDD) were analyzed using 
Spearman correlation analyses. An ANCOVA was performed to con-
firm a difference in SEB probability between children with and with-
out ADHD. In addition, we examined associations between both beta 
power and SEB probability as dependent variables and categorical 
outcomes as fixed factors (remission and response, sex, antidepres-
sant and TMS protocol), controlling for age and baseline symptom 
severity (based on ADHD-RS-IV, QIDS or BDI-II). Remission was the 
primary outcome, defined as ≤18 on the ADHD-RS-IV for ADHD, and 
≤5 on the QIDS or ≤12 on the BDI-II for depression. Response was the 
secondary outcome, defined as ≥50% improvement from baseline on 
the self-rated questionnaires. If both variables were associated with 
diagnosis or remission, a prediction model with both variables was 
developed to investigate if a combination of the variables was more 
predictive of diagnosis or remission than each independent variable. 
All treatment outcome analyses were performed per protocol. 

Lastly, for the development of Brainmarker-III, different cut-off 
points were established based on the highest Youden index for beta 
power and SEB probability, and the positive predictive value (PPV) 
and normalized PPV (nPPV; defined as subsample improved remis-
sion rate) were calculated.

RESULTS
DISCOVERY/EXPLORATION PHASE

FRONTAL BETA NETWORK (FICA)

Low impulse control was associated with a significantly higher score 
of network 44 (F = 11.83, p = 0.0006, d = 0.236), out of 54 functional 
networks. The effect was in the same direction for men and women, 
and for children and adults. No significant associations were found 
with other networks. Figure 1 visualizes the activity of network 44, 
which is a (left-sided) frontal beta network, confirming the associa-
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tion between beta power and impulse control, and a small anti-cor-
related delta-theta component right-temporal. It also shows that the 
contrast between high and low network score in the beta band is 
located at the frontal midline (two-sided).

Figure 1. The frontal beta network (EEG component 44) using eLORETA-fICA. The left map 
(A) visualizes this network viewed from four different angles (anterior [A], posterior [P], supe-
rior [S], inferior [I], left [L], left view [LV] and left hemisphere [LH]). The two colors represent 
joint neural activation and deactivation (anticorrelation). The component covers left-sided 
beta activity at the (anterior and dorsolateral) prefrontal cortex (red; Brodmann area [BA] 
9 and 10), anticorrelated to beta activity in a small area of the left primary somatosensory 
cortex (blue), as well as right-sided slow-wave (delta/theta) activity at the temporal cortex 
(blue; BA 20 and 21), which is also anticorrelated to left-sided prefrontal beta activity. The 
right map (B) visualizes the significant difference between participants with the highest fron-
tal beta network score (N = 500) versus the lowest score (N = 500) from two different angles 
(note: for simplification only beta activity is showed). This illustrates the clear contrast be-
tween high versus low network score: a high score is associated with frontal midline beta 
activity, and not only left sided beta activity as the network suggests.
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FRONTOCENTRAL BETA POWER

Low impulse control was associated with a significantly higher beta 
power (F = 26.93, p < 0.00001, d = 0.180). A sensitivity analysis in-
dicated that the effect was in the same direction for both men and 
women, statistically significant in adults only (F = 9.47, p = 0.002,  
d = 0.171), with no significance observed in children. There was also a 
small, significant positive correlation between WM-FP and beta pow-
er ( = 0.098, p = 0.0005) in adults.

SEB PROBABILITY

Low impulse control was associated with a significantly higher SEB 
probability (F = 10.01, p = 0.002, d = 0.033). A sensitivity analysis in-
dicated that the effect was in the same direction for both men and 
women, statistically significant in adults only (F = 4.748, p = 0.030,  
d = 0.112), while there was no effect in children. In adults, there was a 
small, significant positive correlation between WM-FP and SEB prob-
ability ( = 0.060, p = 0.034).

CORRELATION OF EEG PARAMETERS

Beta power was significantly, but weakly, correlated to SEB probabil-
ity ( = 0.367) and the frontal beta network ( = 0.170) at p < 0.00001. 
However, there was no correlation between SEB probability and the 
frontal beta network.

Although there is a correlation between beta power and SEB probability, 
the degree of overlap is modest. Associations were identified, affirming 
that more impulse control problems are linked to both beta power and 
SEB probability, but the effect sizes appear small. Consequently, in the 
subsequent phase, we delved deeper into this relationship with a mech-
anistic validation, exploring the potential involvement of sleep mainte-
nance.
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MECHANISTIC VALIDATION PHASE

SLEEP MAINTENANCE PROBLEMS AS TRANSDIAGNOSTIC SYMPTOMS

In adults, there was a significant positive correlation between SEB 
probability and the number of nightly awakenings measured by ac-
tigraphy ( = 0.289, p = 0.009). There were no correlations between 
beta power and sleep maintenance problems. Table 1 shows an over-
view of the correlations with sleep problems. In addition, a positive 
correlation was found between awakenings and WM-FP ( = 0.411,  
p = 0.0003), but not between SEB probability and WM-FP ( = 0.066,  
p = 0.7); also see figure 2 for a visualization of this triangular relation-
ship. Note, that the latter correlation was performed in a subsample of 
the “full” sample in which a previous association between SEB proba-
bility and impulsivity/WM-FP was found, albeit with a small effect size 
(and comparable small Spearman's rank correlation coefficient).

Table 1. Correlations between sleep problems and EEG parameters.
Effect sizes of Spearman correlations between sleep problems (wake after sleep onset [WASO] 
and awakenings) measured by actigraphy, and two different EEG parameters (frontocentral 
beta power and SEB [spindling excessive beta] probability, in adults only. The Bonferroni-
significance level is  = 0.05/4 = 0.0125.

Spearman correlations,  Frontocentral   SEB probability
sleep problems  beta power 
Actigraphy, WASO 
  Coefficient  0.051  0.109
  p-value 0.607  0.266
  N 105  105
Actigraphy, awakenings 
  Coefficient  0.072  0.289
  p-value  0.528  0.009
  N 80  80
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Figure 2. Triangular relationship between sleep problems, SEB probability and impulse control. 
A significant positive correlation was identified between nightly awakenings and both SEB 
(spindling excessive beta) probability and impulse control problems. However, no significant 
correlation was found between SEB probability and impulse control problems, implying that 
sleep maintenance problems cause both the presence of SEB as well as the impulse control 
problems.

TRANSLATION PHASE

ADHD DIAGNOSIS

Children with a diagnosis of ADHD had a significantly lower beta 
power (F = 19.235, p = 0.00001, Cohen’s d = -0.427) and higher SEB 
probability (F = 46.824, p < 0.00001, d = 0.744) compared to healthy 
children. There was no group x sex interaction for both beta power 
and SEB probability. See Supplementary Results for an additional dis-
criminant analysis.

Among all children with ADHD, there was also an inverse correlation 
between beta power and baseline ADHD-RS-IV score ( = -0.149, p = 
0.007), and a positive correlation between SEB probability and base-
line score ( = 0.147, p = 0.008). Sensitivity analysis showed that cor-
relations with beta power were greater in boys ( = -0.179, p = 0.006) 
and non-significant in girls.
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ADHD REMISSION

With regard to methylphenidate treatment, there was no main effect 
for beta power on the total ADHD sample, no significant response x 
sex interaction (p = 0.087), but a difference between girls and boys 
(p = 0.013). A sensitivity analysis for boys and girls separately (fig-
ure 3A), revealed that remitting girls had a significantly higher beta 
power at baseline compared to non-remitting girls (F = 5.762, p = 
0.019, d = 0.598), but no significant effect was found in boys. For re-
sponse, there was a main effect on the total ADHD sample (F = 5.254,  
p = 0.023, d = 0.177), and a significant response x sex interaction  
(p = 0.020). Repeating the analysis for boys and girls separately re-
vealed that responding girls had a significantly higher beta power  
(F = 7.677, p = 0.007, d = 0.672), while no effect was found in boys.  
Using the optimal cut-off point determined by maximizing the 
Youden Index for beta power in girls (0.7530, J = 0.308), a PPV of 44% 
(nPPV = 139%) was reached, with a sensitivity of 75%.

There were no significant main or interaction effects for remission 
or response observed in the overall ADHD sample concerning SEB 
probability, only a trend towards an interaction effect for response 
(p = 0.055). However, in line with the differential findings for boys 
and girls with ADHD, we found opposite patterns (post-hoc) between 
boys and girls (figure 3B). Boys who responded to methylphenidate 
had a higher SEB probability at baseline compared to non-responders 
(F = 5.706, p = 0.018, d = 0.273), while there was no effect for remis-
sion. All effects were non-significant in girls.
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Figure 3. Treatment effects in girls and boys diagnosed with ADHD. Remitting and respond-
ing girls have a higher beta power at baseline compared to non-remitting and non-respond-
ing girls, while there is no significant difference in boys (A). Opposite sex effects are observed 
for SEB probability, although statistically significant effects are only found for response in 
boys only (B).

MDD REMISSION

Medication sample: No significant correlation was found between 
baseline QIDS and beta power ( = 0.001, p = 0.97) or SEB probability 
( = 0.078, p = 0.052). 

For beta power, there was a main effect for remission (F = 5.241,  
p = 0.022); remitters had a lower beta power at baseline compared to 
non-remitters (d = -0.229). No interaction effect for the type of anti-
depressant (escitalopram, sertraline or venlafaxine) or sex was found 
(figure 4A). 

In contrast, for SEB probability there was a significant remission 
x treatment interaction (p = 0.020): remitters to sertraline had a 
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higher SEB probability (F = 7.379, p = 0.007, d = 0.269) compared 
to non-remitters, while no statistical differences were found for 
the other two antidepressants (figure 4B). Furthermore, sensitivity 
analyses revealed that the effects were in the same direction for men 
and women. Based on the optimal cut-off values of SEB probabili-
ty for sertraline (0.1034, J = 0.185) and beta power for escitalopram 
and venlafaxine (0.8448, J = 0.132), a PPV of 46% (nPPV = 127%) and 
44% (nPPV = 113%) were reached respectively. The same results were 
found when the SEB cut-off was applied to the escitalopram and ven-
lafaxine group.

Figure 4. Treatment effects in adults diagnosed with MDD. Remitting patients have a lower 
beta power at baseline compared to non-remitting patients, which is more evident in pa-
tients treated with escitalopram or venlafaxine (A). Remitters to sertraline have a higher SEB 
probability at baseline compared to non-remitters, while remitting patients on the other two 
antidepressants have a lower SEB probability compared to non-remitters (B).

TMS sample: There was no significant correlation between base-
line BDI and beta power ( = -0.097, p = 0.18) or SEB probability  
( = 0.026, p = 0.720). Moreover, we found no treatment response 
effects.
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DISCUSSION 

Here, we validate a first transdiagnostic RDoC in the arousal/regula-
tory domain, where – in line with prior research (Arns, Swatzyna, et 
al. 2015) – objective sleep maintenance problems (number of awak-
enings) cause impulse control problems, accompanied by a beta-band 
EEG signature (frontocentral SEB probability). This beta-band sig-
nature is thus reflective of a hypoarousal state, specifically caused 
by sleep maintenance problems. In the next steps, these beta band 
signatures were differentially associated with treatment response in 
ADHD and MDD.

Of the 54 functional networks that were identified through a da-
ta-driven data-reduction method, encompassing all major EEG fre-
quency bands (as described in Meijs et al. (Meijs et al. 2024)), spe-
cifically a left-frontal beta network was associated with impulse 
control. This validation was reinforced by the finding that two op-
erationalizations for prefrontal beta activity – 1) frontocentral spec-
tral beta power and 2) an artificial neural network classification of 
SEB probability, thereby automating the detection of beta spindles 
– were significantly associated with impulse control in a large dataset 
(from TDBRAIN+), albeit with small effect sizes, especially for SEB 
probability. Interestingly, while the discovered functional network, 
spectral beta power and SEB, all comprise prefrontal beta activity, 
there were low correlations between all three signatures. This find-
ing suggests these EEG signatures capture different elements of this 
RDoC construct.

Consistent with the RDoC approach, we used sleep-wake (a dimen-
sion within the arousal/regulatory systems domain) for mechanistic 
validation. Thereby, we replicated previous work that reported an 
association between sleep maintenance, impulse control and SEB 
(Arns, Swatzyna, et al. 2015), in a subsample of patients for whom 
sleep data were available. Here, we used actigraphy as an objective 
measure for sleep problems and the two different operationalizations 
as described above, that can be objectively obtained and do not di-
rectly depend on visual inspection. In line with prior work, we found 
positive correlations, with a medium effect size, between nightly 
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awakenings and poor impulse control as well as the probability of 
having SEB. However, the previously identified association between 
impulse control and SEB probability in the large sample (albeit with 
small effect size and positive correlation), did not reach statistical 
significance in the smaller sample. These results indicate that the 
smaller sample was underpowered. They also confirm the direction-
ality, consistent with prior research, implying that sleep is a common 
factor in such a way that sleep maintenance difficulties cause SEB to 
occur and also may lead to daytime hypoarousal and poor impulse 
control, thereby impacting daily functioning. Hence, this EEG signa-
ture, that thus indexes hypoarousal and impulse control, may hold 
significant importance in clinical settings. Patients exhibiting high 
SEB probability could potentially benefit from integrated sleep man-
agement strategies into their treatment plan, such as additional cog-
nitive behavioral therapy for insomnia (CBT-I). This approach holds 
the potential to improve not only the quality of sleep but also to yield 
advantages across various cognitive, emotional, and behavioral as-
pects (Arns, Kooij, and Coogan 2021).

Interestingly, a diagnosis of ADHD was associated with high SEB 
probability, but low spectral beta power, with a large to medium ef-
fect size respectively. Beta power was inversely correlated to ADHD 
severity, while there was a positive correlation between SEB proba-
bility and severity. The latter findings were evident in males, with no 
statistical significance found in females. While this finding sounds 
counterintuitive, it might well be that these two operationalizations 
pick up two qualitatively different subgroups of ADHD: one charac-
terized by overall low beta power (as often seen as elevated theta-be-
ta ratio in patients diagnosed with ADHD, a frequently replicated 
finding (Barry, Clarke, and Johnstone 2003), although non-replica-
tion is also reported (Arns et al. 2018)), and one with SEB, possibly 
too infrequent to contribute to overall spectral beta power. These 
results emphasize the complementarity of both metrics. This is es-
pecially evident from the differential effects for treatment outcome 
in girls and boys: higher beta power was associated with remission 
and response to methylphenidate in girls with ADHD, while higher 
SEB probability was associated with a better treatment outcome in 
boys, although results were statistically non-significant. Among girls, 
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an achieved PPV of 44% may appear low; however, this indicates an 
improved remission rate (nPPV) of +39%.

For MDD, no associations with symptom severity were found. How-
ever, a drug-specific effect was found: low beta power being pre-
dictive of remission to all three antidepressants, but the effect was 
evidently strongest for escitalopram and venlafaxine. On the other 
hand, high SEB probability was associated with remission to ser-
traline. Moreover, the presence of SEB seems to be of value for strat-
ification purposes regarding antidepressant treatment: if SEB prob-
ability is high, MDD patients are more likely to remit to sertraline, 
while if it is low, patients are more likely to remit to escitalopram or 
venlafaxine. Based on the optimal cut-off for SEB probability, PPVs 
of 46% for sertraline and 44% for the other antidepressants were 
reached, corresponding to nPPVs of respectively +27% and +13%. 
These results match earlier results where patients with EEG abnor-
malities responded better to sertraline (Arns, Gordon, and Boutros 
2017), and normalization of EEG abnormality after eight weeks of 
treatment being specifically associated with response to sertraline 
and not escitalopram (Van der Vinne et al. 2019). In the older litera-
ture the occurrence of spindles and related oscillations was consid-
ered an EEG abnormality related to epileptic activity (Niedermeyer 
and Silva 1999), which in current neurological practice is not regard-
ed as such. SEB is frequently found in the ADHD population, up to 
13-20% (Chabot and Serfontein 1996; Clarke et al. 2001c), and also 
found in healthy controls (Arns et al. 2008), suggesting SEB is not 
a neurologic abnormality, but rather an ‘instable’ state marker that 
is caused by different factors, such as sleep problems often seen in 
ADHD patients (Arns and Olbrich 2014; Roumen and Serge 2014), 
and seen more frequently in patients with epileptiform activity with-
out being of neurologic diagnostic value.

Sertraline, in contrast to the other two antidepressants, is a synap-
tic dopamine reuptake inhibitor that increases extracellular levels of 
dopamine (Tatsumia et al. 1997; Kitaichi et al. 2010). The literature 
supports dysfunction of the dopamine system and the presence of 
associations with dopamine genes in ADHD (Swanson et al. 2007). 
Furthermore, downregulation of the dopamine system, leading to 
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dysfunction of neural circuits such as prefrontal cortex-amygdala 
functional connectivity, has been implicated in the pathophysiology 
of MDD (Belujon and Grace 2017). Thus, our findings suggest that 
the presence of SEB (in particular in combination with low fron-
tocentral beta power) might indicate a disrupted dopamine system 
leading to ADHD or depressive symptoms, and therefore allows 
treatment outcome prediction. 

Research has found a link between dopamine and the regulation of 
sleep, reinforcing the potential use of SEB as an indicative marker for 
sleep problems associated to psychiatric disorders. Dopamine plays 
a role in sleep regulation by promoting waking (Monti and Jantos 
2008), and brain dopamine levels and dopamine transporter (DAT) 
expression and function show circadian fluctuations (Kesner and 
Lovinger 2021). Furthermore, genetic variations in DAT have been 
linked to sleep EEG patterns, such as the presence of slow-way activ-
ity (Kenneth et al. 2014). Additionally, polymorphisms in the gene en-
coding Catechol-O-methyltransferase (COMT), an enzyme involved 
in the metabolic breakdown of dopamine, are associated to dopa-
minergic function in the prefrontal cortex, and may affect cognitive 
function, behavior, sleep architecture, susceptibility to sleep depriva-
tion, the sleep EEG, and responsiveness to stimulant treatment (Dau-
villiers, Tafti, and Landolt 2015; Kenneth et al. 2014). 

The current study has several strengths, such as the use of multi-
ple large samples. A large heterogeneous dataset that consisted of 
patients with various psychiatric disorders was included for inves-
tigating the relation between impulse control, sleep and EEG beta 
activity. The datasets for translating the findings for clinical value 
were all independent of each other. Moreover, we used objective 
measures for impulse control (measured by false positives on a con-
tinuous performance task), sleep maintenance (measured by actigra-
phy), and EEG features (power calculation, deep learning algorithm 
and fICA). However, important limitations of the study include the 
lack of a placebo-controlled arm, and risk of bias and confounding 
related to the open-label design of the included trials. Furthermore, 
the opportunity for out-of-sample validation was restricted due to 
variations in EEG equipment and montages among a potential inde-
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pendent ADHD sample. However, given the substantial sample size 
and consequent high power, we deem our approach to be sufficiently 
robust (Klooster et al. 2023).

In conclusion, we validated the specificity of frontal beta activity be-
ing associated with impulse control, firstly by a fICA on source level 
that was not limited to the beta band, and secondly using two differ-
ent operationalizations for frontocentral beta activity (conventional 
power calculation and training a CNN for classifying SEB). We rep-
licated the triangular relationship involving SEB, sleep and impulse 
control, positing SEB as a state rather than a trait marker caused by 
sleep maintenance problems with concurrent poor impulse control. 
Future research should therefore prioritize investigating sleep prob-
lems to enhance our understanding of impulsivity problems. Lastly, 
we found that frontocentral beta power and SEB probability were 
differentially associated with medication treatment outcome in boys 
and girls with ADHD, as well as drug-specifically associated with 
treatment outcome in adult MDD patients.



118

SUPPLEMENTARY INFORMATION
SUPPLEMENTARY MATERIALS AND METHODS

DEVELOPMENT OF AN ALGORITHM TO CLASSIFY SEB

A convolutional neural network (CNN) model was trained while that 
type of model previously has been successfully used for the analysis 
of EEG in several studies (Tjepkema-Cloostermans, Carvalho, and 
Putten 2018; Putten, Olbrich, and Arns 2018). For the training of a 
CNN deep learning model to classify SEB in the EEG, data from 197 
subjects (a subset TDBRAIN dataset, diagnosed with ADHD, OCD or 
insomnia) were used. These datasets were visually annotated by an 
EEG expert (MA) blinded to diagnostic status, behavioral scores and 
clinical outcomes, and classified. For this purpose, the EEG data were 
segmented into two second segments with a sliding window of 0.2 
seconds, and downsampled from 500 Hz to 125 Hz. This downsam-
pling meant that each segment could be represented 4 times contain-
ing different samples (starting from sample 0, 1, 2 and 3). From partic-
ipants that showed SEB in some segments, all segments containing 
no SEB were not used in subsequent analysis. Since only 6.9% of the 
segments was classified as SEB, this minority class was oversampled 
replicating segments with SEB to get a balanced class distribution 
yielding a total of 205,132 segments. Additionally, layers (or channels) 
were added to the training examples for the model, where electrodes 
were clustered into left-, central- and right electrodes which were 
stacked in a different order for each channel, leading to a depth of 7 
channels. The CNN model was built and trained using TensorFlow 
functional Keras API (Abadi et al. 2016) version 2.4.1, and to find the 
optimal parameters and hyperparameters the hyperband tuner from 
the KerasTuner package (https://keras.io/keras_tuner, version 1.2.1a) 
was used (the parameter space is depicted in Table S1). Tuning was 
done on a random subsample of 75,000 segments. The parameter 
set selected for training had the lowest sparse categorical crossentro-
py loss. The model architecture is depicted in figure S1. For training 
the data was divided in a train set of 80% of the data, a validation 
set containing 10% of the data and a test set of 10%, using a 10-fold 
cross-validation, while taking care data of a single subject did not 
overlap between data partitions (using GroupShuffleSplit from the 
scikit learn package (Pedregosa et al. 2012)).



119

Table S1. (Hyper)parameter search space for Keras Tuner.

Figure S1. Model architecture.

(Hyper) parameter  space
Kernel height   [1, 2, 3]
Kernel width   [1, 2, 5, 25]
Number of convolutional blocks [1, 2, 3]
   CNN layer: Number of filters        [10, 20, 30, 40, 50, 60]
   Pooling layer:          [‘max’, ‘average’]
   Dropout:          [0, 0.1, 0.25]
GlobalPooling   [‘max’, ‘average’]
Optimizer   [‘Adamax’, ’sgd’]
LearningRate   [4e-3, 1e-2]

input_1: InputLayer input:
output:

[(none, 9, 250, 7)]
[(none, 9, 250, 7)]

conv2d: Conv2D input:
output:

(none, 9, 250, 7)
(none, 9, 250, 50)

max_pooling2d: MaxPooling2D input:
output:

(none, 9, 250, 50)
(none, 4, 125, 50)

dropout: Dropout input:
output:

(none, 4, 125, 50)
(none, 4, 125, 50)

batch_normalization: BatchNormalization input:
output:

(none, 4, 125, 50)
(none, 4, 125, 50)

re_lu: ReLU input:
output:

(none, 4, 125, 50)
(none, 4, 125, 50)

conv2d_1: Conv2D input:
output:

(none, 4, 125, 50)
(none, 4, 125, 60)

average_pooling2d: AveragePooling2D input:
output:

(none, 4, 125, 60)
(none, 2, 62, 60)

batch_normalization_1: BatchNormalization input:
output:

(none, 2, 62, 60)
(none, 2, 62, 60)

re_lu_1: ReLU input:
output:

(none, 2, 62, 60)
(none, 2, 62, 60)

global_average_pooling2d: GlobalAveragePooling2D input:
output:

(none, 2, 62, 60)
(none, 60)

dense: Dense input:
output:

(none, 60)
(none, 2)
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SUPPLEMENTARY RESULTS
ADHD DIAGNOSIS

Discriminant analysis revealed that a prediction model of both pre-
dictors performed better (Wilk’s Lambda, λ = 0.864; Chi-Square, χ2 

= 69.760; p < 0.00001) than beta power (λ = 0.960; χ2 = 19.561; p = 
0.00001) or SEB (λ = 0.910; χ2 = 44.821; p < 0.00001) alone. Optimal 
thresholds for beta power and SEB probability were established based 
on the maximum Youden Index. According to these cut-offs, ADHD 
diagnosis occurred in 83% of children exhibiting a high SEB proba-
bility and 87% of those displaying both low beta power and high SEB 
probability. Specificity for SEB probability was 76%, but sensitivity 
was modest at 56%.

Cross-tabulations were constructed using the optimal cut-off points 
for diagnosing ADHD, remission to methylphenidate in girls with 
ADHD, and remission to antidepressant medication in MDD. The 
results of these cross-tabulations are shown in figure S2.

Figure S2. Cross-tabulations were generated using optimal cut-off values for remission, de-
termined by the maximum Youden Index for SEB probability (“SEB”), beta power (“Pow-
er”) or both metrics combined; 0 = non-remission; 1 = remission. The negative and positive 
predictive value (NPV and PPV; also normalized for the actual remission rate), and both 
sensitivity and specificity, were calculated. Columns represent the actual (non-)remission 
rates, rows the (non-)remission rates based on the cut-offs.
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THESIS OVERVIEW

In this thesis, the central focus was the shift from traditional psy-
chiatric care –which relies on symptom clusters for diagnosis and 
a ‘diagnosis-informed one-size-fits-all’ approach for treatment 

decisions, leading to varied treatment outcome and imprecise in-
terventions– towards a stratified psychiatry approach grounded in 
a transdiagnostic framework. Therefore, we aimed to identify trans-
diagnostic markers for predicting treatment response in psychiatric 
disorders. Using a novel, transdiagnostic approach, we leveraged 
large and heterogeneous datasets of psychiatric patients (compris-
ing a total of over 5,000 EEGs) to capture a diverse range of EEG 
features potentially predictive of treatment outcome. The eLORE-
TA-fICA method, utilized in this thesis as a data-driven data-reduc-
tion technique, yielded independent EEG components, or functional 
brain networks (data-reduction), by identifying data-driven patterns 
within the EEG data, thereby preserving all information. We utilized 
independent datasets (comprising a total of over 1,500 EEGs), encom-
passing adult patients with major depressive disorder (MDD) and 
children diagnosed with attention deficit and hyperactivity disorder 
(ADHD), for treatment prediction purposes.
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GENETICS AS GROUND TRUTH: POLYGENIC ASSOCIATION ANALYSIS

Considering that existing classification systems exhibit inconsistent 
predictability regarding treatment outcome (Insel et al. 2010; Morris 
and Cuthbert 2012), and that the alignment between neurobiology on 
the one hand and (subjective) psychological measures (and amongst) 
on the other hand is limited (Krepel et al. 2019; Van der Vinne et al. 
2017; Saveanu et al. 2015), we embraced a genetic-informed strategy 
to first find biologically plausible functional networks (figure 1). The 
networks derived from eLORETA-fICA were associated to polygenic 
scores of antidepressant response (PGS-AR), representing the genetic 
susceptibility of individuals to respond to antidepressant treatment 
in this context. Polygenic (risk) scores are biologically grounded, ob-
jective measurements based on genetic data, making them less sus-
ceptible to bias or interpretation influenced by individual perspec-
tives (Lewis and Vassos 2020; Wray et al. 2021). 

Nonetheless, polygenic scores alone are unlikely to conclusively 
predict future diagnoses or treatment outcomes, as they can only 
capture a portion of the genetic influences, which, in turn, account 
for only a fraction of the overall risk (Wray et al. 2021). They can, 
however, be used for stratification purposes. By employing polygenic 
association analysis, as we did in the first two studies (chapter 2 and 
3), the likelihood of discovering a biologically meaningful function-
al network capable of predicting differential treatment response is 
increased. The main results indicate that our innovative approach, 
using PGS-AR association analysis as an intermediate step to select 
networks obtained through eLORETA-fICA, can successfully identify 
functional networks with sex-specific and medication-specific treat-
ment predictive capabilities for MDD.

OPERATIONALIZATIONS FOR FRONTAL BETA ACTIVITY

In the last study (chapter 4), we chose not to integrate the genet-
ics-informed approach. Instead, emphasis was placed on the inter-
section between biology and psychology, using objective measures 
for impulse control (false positives errors or errors of commission on 
a continuous performance task) as well as for objective sleep-wake 
measures using actigraphy. We investigated how these neuropsy-
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chological measures were related to two operationalizations for EEG 
beta activity in frontocentral brain regions, within the RDoC arous-
al/regulatory domain: 1) beta power and 2) spindling excessive beta 
(SEB) probability, a measure that we derived through deep learning. 
The implementation of a deep learning algorithm for automatically 
identifying SEB enabled us to conduct this large-scale study, over-
coming the limitations of the previous reliance on labor-intensive 
and subjective visual inspection.

Here, the eLORETA-fICA method was employed to confirm the pres-
ence of frontal beta activity associated with impulse control. These 
results replicate a prior study (Arns, Swatzyna, et al. 2015), supporting 
the concept that SEB is not directly, but rather indirectly (mediat-
ed by sleep problems) related to impulse control. We concluded that 
our findings indicate that SEB is a transdiagnostic state marker for 
hypoarousal caused by sleep maintenance problems. Notably, poor 
sleep maintenance was linked to poor impulse control. This link 
that has been contextualized within a more comprehensive under-
standing of the intricate interplay among regulatory mechanisms 
governing sleep, arousal, affect, and attention within the overarch-
ing circuitry of arousal regulation (Dahl 1996). Lastly, we discovered 
that both operationalizations of beta activity exhibit sex-specific 
and medication-specific predictive potential for treatments in both 
ADHD and MDD.
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Figure 1. Adhering to the biopsychosocial model, depression arises from a combination of 
biological, psychological, and social factors. Diagnosis relies on clinical symptom observa-
tion, often supplemented by subjective questionnaires. However, these questionnaires may 
not consistently align with each other or with current classification systems, which may not 
fully capture underlying mechanisms of depression. Due to the lack of reliable predictors for 
treatment success, a stepped care approach is common. Consequently, our objective was to 
identify biologically plausible brain networks capable of predicting treatment outcomes. We 
employed an intermediate step approach associating these networks with polygenic scores, 
thus circumventing subjective measures by integrating two objective measures.

FUNCTIONAL NETWORKS 

The EEG components obtained with eLORETA-fICA are computa-
tionally derived, statistically independent networks that do not nec-
essarily reflect existing networks (figure 2). However, our primary 
aim was not to find or investigate existing brain networks, nor to 
discover depression-specific networks, but rather to explore diagno-
sis-independent, universal brain networks, following the Research 
Domain Criteria (RDoC) approach. Consequently, we derived net-
works from a heterogeneous sample to predict treatment outcomes 
in MDD and ADHD, emphasizing a universal and transdiagnostic, 
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rather than a diagnosis-specific focus. Additionally, in prior work 
(Voetterl et al. 2022), EEG biomarkers were developed on both TD-
BRAIN+ (Two Decades-Brainclinics Research Archive for Insights 
in Neurophysiology, plus data from other clinics) and large groups 
of healthy controls. The results revealed that biomarkers developed 
on TDBRAIN+ generalized well to healthy controls, while the model 
developed on healthy controls did not generalize well to TDBRAIN+. 
Consequently, we prioritized the development of networks on the 
largest dataset available (TDBRAIN+). This approach presents both 
a strength, allowing for maximal variance, and a potential limitation 
due to its non-specific nature. Future research should delve into the 
broader implications of eLORETA-fICA networks for other disorders 
or transdiagnostic purposes.

SLOW WAVE NETWORK

In our proof-of-concept study (chapter 2), utilizing the eLORETA-fI-
CA method, we derived 29 functional networks from a large heterog-
enous sample (N = 1,195). The network significantly associated with 
PGS-AR proved challenging to interpret, as it was characterized by 
slow wave activity in multiple, anti-correlated brain areas. This scat-
teredness observed, a phenomenon we found in all networks, may be 
attributed to the use of high-density EEG (65 channels). Intriguingly, 
the association with PGS-AR was only discerned in men, and the slow 
wave network emerged as a male-specific predictor of response. This 
alignment substantiates the utility of a polygenic-informed approach.

POSTERIOR ALPHA NETWORK 

In the follow-up study (chapter 3), eLORETA-fICA was applied to a 
nearly four times larger, heterogenous cohort of psychiatric patients 
including the full lifespan (N = 4,045), albeit with a lower density of 
EEG channels (26 channels). This analysis captured a broader range 
of diagnosis-independent neurobiological EEG features, resulting in 
54 functional networks. Again, we carried out an PGS-AR association 
analysis, but in an independent sample: the cohort initially employed 
for eLORETA-fICA in the first study. Thus, we followed a two-step 
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process for the discovery of the network (in contrast to the proof-of-
concept study): development in the first dataset and validation in the 
second. An age-related posterior alpha network that explained >60% 
of the EEG variance was identified. The posterior alpha network re-
flected alpha oscillations in the parietal lobe, which were inversely 
related to alpha oscillations in the occipital lobe. It is known that 
posterior alpha waves occur primarily during relaxed wakefulness, 
and can be best seen with eyes closed (Klimesch 1999). 

Given the network’s strong association with age and visual resem-
blance to EEG vigilance stages, it was anticipated that children, the 
elderly, or adults with less sleep might exhibit a distinct pattern of 
network activity over the course of EEG recordings, reflecting quick-
er transitions into lower EEG arousal/vigilance stages. Moreover, 
there is evidence that MDD patients exhibit fewer and delayed de-
clines into lower EEG-vigilance stages compared to healthy con-
trols, marked by increased alpha activity and decreased non-alpha 
EEG (Hegerl et al. 2011; Ulke et al. 2018). However, no correlation 
was observed between age, sleep duration, or other baseline vari-
ables and the changes in network activity over time. Additionally, 
the network displayed remarkable stability across recording intervals, 
as evidenced by a very high intraclass correlation coefficient (ICC = 
0.98). This stability, coupled with its genetic associations, suggests 
that the posterior alpha network represents a trait rather than a tran-
sient state feature, which is supported by prior research that found 
that resting state alpha is a stable trait characteristic (Tenke et al. 
2018; Allen et al. 2004; Smit et al. 2005). However, our discovery of 
a relation with age suggests a potential neurodevelopmental aspect 
to the network. Physiological aging involves a power increase of the 
occipital alpha rhythms during childhood, followed by a power de-
crease in adulthood, with changes occurring faster in posterior re-
gions than in frontal regions (Clarke et al. 2001a; Chiang et al. 2011; 
Babiloni et al. 2006), aligning closely with our study’s observations. 
Thus, the network could serve as a neurodevelopmental trait marker 
with predictive significance for both lifetime depression and treat-
ment outcomes.
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FRONTAL BETA NETWORK

In the final study (chapter 4), instead of conducting another eLORE-
TA-fICA, we employed the 54 functional networks obtained in the 
abovementioned follow-up study for further analyses. This time, in 
contrast to the prior approach with PGS-AR, we utilized a dichoto-
mous measure for impulse control, established through the number 
false positive errors (0 or >1) on a working memory task. We found 
that patients with poor impulse control exhibited heightened activity 
in a frontal beta network. This network primarily showed (left-sided) 
beta activity at the prefrontal cortex (PFC) and a small anticorrelated 
beta component at the (left) primary somatosensory cortex that is 
not fully comprehended, thereby providing independent confirma-
tion of our hypothesis linking frontal beta activity to impulse con-
trol. Emerging evidence supports the involvement of the PFC in the 
arousal circuitry (Mashour, Pal, and Brown 2022), including an im-
portant role in controlling impulsivity (Kim and Lee 2011). 

Figure 2. The three functional networks identified in this thesis, visualized from four differ-
ent angles. The two colors represent joint neural activation and deactivation (anticorrela-
tion). The network’s neural oscillation frequency varies, encompassing mainly slow delta and 
some theta oscillations (left: slow wave network), alpha oscillations (middle: posterior alpha 
network), and beta oscillations (right: frontal beta network). All networks were derived by 
eLORERA-fICA using two independent large heterogenous cohorts (the slow wave network: 
N = 1,123; the posterior alpha network and frontal network: TDBRAIN+, N = 4,045). A = 
anterior, P = posterior. 
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CLINICAL RELEVANCE 

The findings of this thesis underscore the potential of function-
al networks as prognostic indicators in clinical settings. Individual 
functional network scores can be easily and cost-effectively derived 
from resting-state EEG recordings, requiring a minimum of 19 chan-
nels but remaining independent of the EEG apparatus used. Based 
on these network scores, patients with MDD can be stratified to the 
most appropriate antidepressant treatment with the highest likeli-
hood of achieving remission before the initiation of treatment.

THE NETWORK-BASED STRATEGY

In our proof-of-concept study, the slow wave network emerged as 
a sex-specific, non-treatment-specific, and unidirectional predictor 
for antidepressant response. Thus, although the normalized positive 
predictive value (PPV) indicated a predicted increase in response rate 
of about 25% for all treatments, the network showed no stratification 
potential, which is desired for clinical purposes. However, in the fol-
low-up study, the discovered posterior-alpha ageing network was sig-
nificantly associated with remission to two different evidence-based 
treatments for MDD, in a drug-class specific (only venlafaxine) and 
sex-specific (opposite directions for TMS and concurrent psychother-
apy in men and women) manner. Thus, this network demonstrated 
stratification potential. The normalized PPV indicated an improve-
ment of the remission rate of more than 30% in both male and fe-
male patients with MDD.

THE RDOC APPROACH

In the last study, the deep learning derived SEB probability demon-
strated potential for antidepressant medication stratification in 
MDD patients, effectively guiding treatment choices towards three 
different antidepressants. Notably, the normalized PPV for remission 
of this stratification indicated an increased remission rate of 27% for 
sertraline and 13% for escitalopram and venlafaxine. Within this co-
hort, frontocentral beta power emerged as an unprecedented treat-
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ment predictor exclusive to girls with ADHD, increased beta power 
being associated with better response to methylphenidate, showcas-
ing a nearly 40% increase in remission rates. This finding stands in 
contrast to all other predictors for ADHD treatment outcome, which 
were found to be applicable to boys only.

REVOLUTIONIZING TREATMENT PARADIGMS

In conclusion, the innovative network-based strategy and RDoC 
approach are poised to become pivotal tools in future treatment 
paradigms, contributing to the development of stratified and, later 
perhaps, personalized medicine. Those strategies provide a more 
targeted and efficient alternative to the current stepped-care, ‘tri-
al-and-error’ practice. 
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TREATMENT AND SEX-SPECIFIC EFFECTS 

We observed effects that were specific to both sex and treatment. The 
slow wave network predicted responses to all treatment modalities 
but only in males. In contrast, the posterior alpha network served as a 
drug-specific predictor, and differentially predicted remission to TMS 
and concurrent psychotherapy for men and women. Additionally, the 
frontal beta network was consistently associated with impulsivity in 
both sexes, indicating poorer impulse control was related to elevated 
frontal beta activity. However, both operationalizations for frontocen-
tral beta activity –beta power and SEB probability– were differentially 
predictive of the outcome of psychopharmacotherapy, specifically for 
girls and the type of antidepressant, respectively.

DIFFERENCES BETWEEN ANTIDEPRESSANT PSYCHOPHARMACOTHERAPIES

The slow wave network proved to be a general predictor of antidepres-
sant treatment response in males, whereas the posterior alpha network 
showed a specific association only with venlafaxine response, not with 
escitalopram or sertraline. Furthermore, frontocentral SEB probability 
displayed differential associations with remission, high SEB probabil-
ity being associated to sertraline remission on one hand, and low SEB 
probability to escitalopram or venlafaxine remission on the other.

Venlafaxine versus escitalopram and sertraline
Venlafaxine differs from escitalopram and sertraline, which selective-
ly inhibit the reuptake of serotonin (SSRI), primarily because it inhib-
its the reuptake of both serotonin and norepinephrine (SNRI) in the 
brain, in a sequential manner (Sansone and Sansone 2014). There is 
evidence that variations in (the topographical distribution of) alpha 
activity in MDD distinguish between responders and non-responders 
to pharmacotherapy in a drug-specific manner. Relatively greater right 
frontal alpha in women has been associated with a favorable response 
to escitalopram and sertraline, but not venlafaxine (Arns et al. 2016). 
Furthermore, increased posterior alpha in MDD has been associated 
with a better treatment response to antidepressant medications, with-
out showing discernible difference in predictive value for response to 
SSRI monotherapy versus dual treatment targeting serotonergic and 
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other monoamine neurotransmitters (Ulrich, Renfordt, and Frick 1986; 
Bruder et al. 2008; Tenke et al. 2011). 

Variations in central nervous system (CNS) and autonomic nervous sys-
tem arousal profiles could potentially distinguish between outcomes of 
SSRI and SNRI treatments. A prior study showed that responders and 
remitters to an SSRI showed a faster decline of CNS-arousal compared 
to non-responders or non-remitters at baseline, while this pattern did 
not hold for venlafaxine (Olbrich et al. 2016). This indicates that varia-
tions in CNS arousal are not predictive of outcomes with venlafaxine/
SNRI treatments, but rather are linked to response with SSRIs. This 
finding is consistent with our results regarding the stability of the pos-
terior alpha network, which displayed a high level of stability over re-
cording time. This suggests the network does not reflect CNS arousal 
state. However, this reinforces the conclusion that the posterior alpha 
network does not predict SSRI response and that its predictive power 
for venlafaxine response can be attributed to other factors.

Considering that the posterior alpha network specifically predicted re-
sponse to venlafaxine, this network may reflect noradrenergic projec-
tions to the posterior cortex, which could explain its ability to differen-
tiate outcomes between different pharmacologic profiles (SSRI versus 
SNRI). In other words, the network’s activity might be influenced by 
the noradrenergic effects of venlafaxine, leading to its predictive value 
in treatment response in a drug-specific manner. 

Sertraline versus escitalopram and venlafaxine
Sertraline stands apart from the other two antidepressants due to its 
modest activity as an inhibitor of dopamine reuptake, which may lead 
to a distinct pharmacodynamic profile (Sanchez, Reines, and Mont-
gomery 2014; Cipriani et al. 2010). EEG abnormalities, such as parox-
ysmal activity, observed in depressed patients (without a concurrent 
neurological condition like epilepsy), have been associated to less favor-
able treatment outcomes with escitalopram or venlafaxine. However, 
this association was not observed with sertraline (Arns, Gordon, and 
Boutros 2017). Moreover, while there were no significant differences in 
EEG normalization patterns between all three antidepressants, among 
patients achieving EEG normalization following treatment, it was most 
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probable to observe a favorable response with sertraline (Van der Vinne 
et al. 2019). This suggests that sertraline may possess some anticonvul-
sant properties.

Another explanation lies in its most pronounced inhibitory activity on 
the dopamine active transporter. Several studies suggest that dopamine 
plays a role in regulating sleep-wake cycles and arousal, with dopamine 
promoting arousal and wakefulness (Wisor et al. 2001; Eban-Rothschild 
et al. 2016; Kaźmierczak and Nicola 2022). Given our discovery of a pos-
itive correlation between SEB probability and sleep maintenance prob-
lems, as well as the association of high SEB probability with successful 
remission with sertraline and low SEB probability with remission to 
other the antidepressants, it is plausible to consider SEB probability as 
a marker for hypoarousal that delineates depression into two distinct 
subtypes. One subtype, characterized by hypoarousal, demonstrates 
a favorable outcome to sertraline due to its dopamine-related effects, 
while the other, non-hypoaroused subtype, exhibits better outcomes to 
alternative antidepressants. The finding that high SEB probability was 
associated with a diagnosis of ADHD, further supports a link between 
this marker and dopamine. Although questioned, the involvement of 
dopamine in the etiology of ADHD is based on the facts that dopamine 
reuptake blockers can reduce ADHD symptoms, and that some patients 
with ADHD have polymorphisms of genes coding for dopamine regu-
lation, such as dopamine receptor genes (Blum et al. 2008; Swanson 
et al. 2007). Moreover, evidence indicates a link between dopamine 
and beta activity, as drugs modulating dopamine and its receptors can 
effectively influence beta activity levels (Jenkinson and Brown 2011). 
Additionally, dopamine replacement therapy in parkinsonian patients 
results in significant increases in alpha and beta power (Melgari et al. 
2014). These findings collectively emphasize a relation between (hypo)
arousal, dopamine, and beta activity. Deficits in dopamine (regulation) 
may contribute to hypoarousal, leading to reduced beta power along-
side excessive beta spindling.
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UNDERSTANDING SEX SPECIFIC EFFECTS

Several recent studies have revealed that deep learning algorithms 
can accurately discern sex based on EEG data (Putten, Olbrich, and 
Arns 2018; Bučková et al. 2020; Jochmann et al. 2023). This suggests 
that sex may act as a confounding factor in EEG analysis, particularly 
in psychiatric disorders where prevalence differs between sexes. Ad-
ditionally, a meta-analysis on EEG frontal alpha asymmetry indicated 
that both sex and age could potentially confound results (Van der 
Vinne et al. 2017). Consequently, we took these potential confound-
ers into account in our analyses. However, we still found sex-specif-
ic effects. Previous research has identified sex-specific predictors of 
treatment outcome. 

Major Depressive Disorder (MDD)
Alpha asymmetry in patients with MDD has been found to be associ-
ated with different antidepressant medications in a sex-specific man-
ner, even after controlling for potential confounders such as sex and 
age (Arns et al. 2016). Furthermore, a recent study employing a novel 
deep learning pipeline to classify patients’ response to TMS found 
that TMS affects depression differently based on sex (Adamson et al. 
2022). Hence, it is plausible that factors associated with sex exert an 
influence on treatment outcomes. Different biological patterns for 
women and men with MDD are identified, including variations in 
markers of the monoaminergic system, immune system, neuroplas-
ticity, as well as certain hormones and neurotransmitters (Labaka et 
al. 2018). Moreover, several biological factors potentially influence 
the effectiveness of TMS treatment in women (Hanlon and McCal-
ley 2022): the closer proximity of the brain to the scalp at the PFC 
(resulting in larger TMS-induced electric fields), the higher density 
of gray matter and gyrification in the PFC, and elevated levels of es-
tradiol (enhancing cortical excitability). These variations may help 
explain differences in the prevalence of MDD and responses to TMS 
treatment observed between male and female MDD patients in our 
results. Our discovered networks may have captured variations in 
these biological factors, which could influence the effectiveness of 
certain MDD treatments differently in women compared to men, 
thus contributing to the differential treatment prediction.
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Attention-Deficit/Hyperactivity Disorder (ADHD)
Sex differences in ADHD have been a topic of ongoing research and 
debate. Some researchers argue that, while prevalence rates are high-
er among boys than girls, symptom presentation across sexes tends 
to be similar (Rucklidge 2010; Cortese et al. 2016). Conversely, other 
studies contend that girls are often underdiagnosed due to the sub-
tle nature of their symptoms (less prominent hyperactivity and im-
pulsivity, among others), which can have lasting negative impacts on 
their well-being into adulthood (Quinn and Madhoo 2014; Attoe and 
Climie 2023). This underscores the pressing need for a biomarker to 
facilitate ADHD diagnosis in girls. The notion that boys may exhibit 
more pronounced impulsivity than girls with ADHD is supported by 
the results of continuous performance tests (Hasson and Fine 2012). 
Moreover, significant EEG sex-differences in absolute and relative 
power and theta/beta ratio, including dissimilarities between ADHD 
subtypes, have been observed between males and females both with 
and without ADHD (Dupuy et al. 2013; 2021). These results indicate 
that ADHD influences EEG patterns differently across sexes. 

We found no differences between inattention and hyperactivity/im-
pulsivity subscales between boys and girls with ADHD, and identified 
no sex-specific predictor for diagnosis. Low beta power and high SEB 
probability in frontocentral regions were found to be associated with 
ADHD in both sexes, also linked to the severity of symptoms. SEB 
probability emerged as the strongest association, with 83% of all chil-
dren exhibiting high SEB probability being diagnosed with ADHD. 
This indicates that this EEG signature may serve as a potential mark-
er for ADHD regardless of sex.

As regards treatment response, we did identify frontocentral beta 
power as a sex-specific predictor for remission. It is proposed that 
stimulant medication has the potential to improve the EEG sub-
strate linked to processing deficits in children diagnosed with ADHD 
(Clarke et al. 2002; 2003; 2007). Specifically, medication may reduce 
increased or excessive beta activity in frontal regions, but has also 
been associated with an increase in reduced frontal relative beta 
power in girls. Building upon the insights from previous research, it 
appears plausible that sex-specific EEG patterns are linked to ADHD, 
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suggesting that methylphenidate may exert distinct effects on these 
EEG substrates in girls and boys.

FUTURE RESEARCH 

In future studies, it is recommended to utilize our proposed ‘ground 
truth scenario’, which involves employing various objective mea-
sures to uncover biologically plausible transdiagnostic markers for 
assessing their ability to predict treatment outcomes across a range 
of psychiatric disorders. Firstly, research could incorporate different 
polygenic (risk) scores, such as those for schizophrenia (PRS-SCZ) 
and epilepsy. Recent research has revealed a significant association 
between PRS-SCZ and electroconvulsive therapy outcomes, which 
supports the relevance of using PRSs in precision psychiatry (Luykx 
et al. 2022). Building upon these findings, and upon prior studies 
that found a link between (epileptiform) EEG abnormalities and 
drug-specific treatment response (Arns, Gordon, and Boutros 2017; 
Van der Vinne et al. 2019), associations with PRS for epilepsy may 
reveal valuable markers able to predict antidepressant or anticon-
vulsant treatment response in depression, bipolar disorder or other 
psychiatric disorders.
Furthermore, researchers should concentrate on examining other 
objective sleep measures and their associations with functional net-
works. This might extend to understanding how these networks are 
implicated in (sleep problems associated to) psychiatric disorders and 
may influence treatment outcomes. Moreover, these studies should 
investigate the role of sleep disturbances in weakening impulse con-
trol and whether addressing these sleep problems (by means of cog-
nitive behavior therapy for insomnia for example) could lead to im-
provements not only in impulse control but also in other psychiatric 
symptoms.

Overall, the overarching goal would be to leverage objective measures 
and advanced analytical techniques to gain deeper insights into the 
mechanisms underlying treatment response in psychiatric disorders 
and to develop more personalized and effective treatment strategies.
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CONCLUSION 

In conclusion, this doctoral thesis represents a step forward in the 
quest for transdiagnostic markers of treatment response in psychiat-
ric disorders. By leveraging large, heterogenous datasets and integrat-
ing objective measures from EEG, genetics, and neuropsychology, 
we have identified transdiagnostic EEG markers with treatment pre-
diction capabilities. Our findings have highlighted sex-specific and 
medication-specific effects, which underscores the potential of these 
markers for stratification approaches that may target specific biolog-
ical mechanisms underlying psychiatric symptoms, and for devel-
oping more personalized and effective treatment strategies. Moving 
forward, further research and validation are crucial to realizing their 
full clinical utility and ultimately revolutionizing psychiatric care. 
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ENGLISH SUMMARY

The current clinical practice in psychiatry relies on the Diag-
nostic and Statistical Manual of Mental Disorders for cat-
egorizing psychiatric disorders based on symptoms. How-

ever, this system has limitations, including inconsistent treatment 
responses and overlooking underlying mechanisms of mental dys-
function. Psychiatric disorders, like major depressive disorder (MDD) 
or attention deficit hyperactivity disorder (ADHD), are heterogenous 
and often co-occur with other psychiatric disorders, suggesting the 
need for more personalized approaches. Traditionally, treatment 
decisions follow a stepped-care model, but this may not adequately 
address the complexity of mental health conditions. Transdiagnostic 
psychiatry proposes a shift towards understanding common factors 
across disorders rather than rigid diagnostic categories, potentially 
simplifying treatment protocols and improving outcomes.

Transdiagnostic markers, based on objective measures (e.g. genetic 
variants or neuroimaging characteristics) can help understand the 
mechanisms underlying psychiatric conditions and aid in predicting 
treatment response. Moreover, deep learning, a subtype of artificial 
intelligence, holds promise in automating identification of markers 
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from large data. 

This thesis aimed to identify transdiagnostic markers from electro-
encephalography (EEG) data, for predicting treatment response in 
MDD and ADHD. Hereby, we leveraged large and heterogeneous 
datasets to capture a broad range of EEG features. Utilizing a da-
ta-driven data-reduction method at source level activity, various in-
dependent EEG-derived functional brain networks were extracted. 
Polygenic association analysis was employed to select biologically 
feasible networks, potentially predictive of treatment outcomes. The 
results of the proof-of-concept study and follow-up study revealed 
respectively a slow wave network and posterior alpha network relat-
ed to age, with sex-specific and medication-specific treatment predic-
tive capabilities for MDD, demonstrating the stratification potential 
of this innovative approach. 

The final study focused on the intersection between biology and neu-
ropsychology, concentrating on objective measures for impulsivity 
and sleep within the Research Domain Criteria (RDoC) arousal/reg-
ulatory domain. Patients with poor impulse control exhibited height-
ened activity in a frontal beta network. Furthermore, we explored 
how sleep maintenance problems were related to impulse control 
on one hand, and to frontocentral EEG beta activity as a marker for 
hypoarousal on the other. Our findings indicated that spindling ex-
cessive beta (SEB) probability, a measure derived through deep learn-
ing, is a transdiagnostic state marker for hypoarousal caused by sleep 
maintenance problems, with concurrent poor impulse control (and 
is not necessarily a direct marker for impulsivity).

Furthermore, we discovered that frontocentral beta activity has 
treatment predictive capacities. Specifically, we found that SEB 
probability predicts treatment outcomes in MDD in a drug-specif-
ic manner, while beta power in frontocentral regions is predictive 
for treatment outcome in girls with ADHD. The results provided 
insights into the complex interplay among regulatory mechanisms 
governing sleep, arousal and affect.
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In summary, the findings emphasize the potential of employing a 
network-based and RDoC approach in biomarker research. The in-
tegration of objective measures such as EEG, genetics, and sleep data, 
holds promise for future investigations into biomarkers predicting 
treatment outcomes. Although this thesis does not directly lead to 
immediate changes in psychiatric care, it represents a necessary first-
step towards future advancements in scientific research on biomark-
ers. Overall, this doctoral thesis underscores a shift towards more 
targeted approaches compared to current treatment paradigms, 
which ultimately may lead to a better understanding of psychiatric 
disorders and improved treatment outcomes. 
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NEDERLANDSE SAMENVATTING

De huidige klinische praktijk in de psychiatrie vertrouwt op 
de Diagnostic and Statistical Manual of Mental Disorders 
voor het categoriseren van psychiatrische stoornissen op 

basis van symptomen. Dit systeem heeft echter beperkingen, waar-
onder inconsistente behandeluitkomsten en het over het hoofd 
zien van onderliggende mechanismen van psychische disfunctie. 
Psychiatrische stoornissen, zoals een depressieve stoornis of aan-
dachtstekortstoornis met hyperactiviteit (ADHD), zijn heterogene 
ziektebeelden en komen vaak samen voor met andere psychiatrische 
aandoeningen, wat wijst op de noodzaak van meer gepersonali-
seerde benaderingen. Traditioneel volgen behandelbeslissingen een 
‘stepped-care-model’, maar dit pakt de complexiteit van psychische 
aandoeningen mogelijk niet adequaat aan. Transdiagnostische 
psychiatrie stelt een verschuiving voor naar het begrijpen van ge-
meenschappelijke factoren tussen stoornissen in plaats van rigide 
diagnostische categorieën, wat de behandelprotocollen zou kunnen 
vereenvoudigen en de behandelresultaten zou kunnen verbeteren. 

Transdiagnostische markers, gebaseerd op objectieve metingen (zoals 
genetische varianten of kenmerken op basis van neuroimaging), 
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kunnen helpen bij het begrijpen van mechanismen die ten grond-
slag liggen aan psychiatrische aandoeningen en bij het voorspellen 
van behandelrespons. Bovendien kan deep learning, een vorm van 
artificiële intelligentie, behulpzaam zijn bij het automatiseren van de 
identificatie van markers uit grote data. 

Dit proefschrift had tot doel om transdiagnostische markers te iden-
tificeren in elektro-encefalografie (EEG) data, die behandelrespons bij 
depressie en ADHD kunnen voorspellen. Hierbij maakten we gebruik 
van grote en heterogene datasets, om zodoende een breed scala aan 
EEG-kenmerken te verkrijgen. Door gebruik te maken van een da-
ta-gedreven data-reductiemethode op bronniveau-activiteit werden 
verschillende onafhankelijke EEG-afgeleide functionele hersen-
netwerken geëxtraheerd. Polygene associatieanalyse werd gebruikt 
om netwerken te selecteren, die het meest waarschijnlijk samenhan-
gen met biologische processen, en daarmee potentieel voorspellend 
zijn voor behandelresultaten. In de proof-of-conceptstudie en fol-
low-upstudie werden respectievelijk een netwerk met langzame 
golfactiviteit en een posterieur alfa-netwerk (dat was gerelateerd 
aan leeftijd) geselecteerd. De netwerken hadden sekse-specifieke en 
medicijn-specifieke voorspellende capaciteiten voor de behandelu-
itkomst bij een depressieve stoornis, wat de stratificatiepotentie van 
deze innovatieve aanpak aantoont.

De laatste studie legde de focus op de intersectie tussen biologie en 
neuropsychologie, met de nadruk op objectieve metingen voor im-
pulsiviteit en slaap binnen het arousal/regulatory domein, afkomstig 
van de Research Domain Criteria (RDoC). Patiënten met een slechte 
impulscontrole vertoonden verhoogde activiteit in een frontaal bè-
ta-netwerk. Bovendien onderzochten we hoe doorslaapproblemen ge-
relateerd waren aan impulscontrole enerzijds, en aan frontocentrale 
EEG bèta-activiteit als marker voor hypoarousal anderzijds. De bev-
indingen lieten zien dat de waarschijnlijkheid van aanwezigheid van 
spindling excessive beta (SEB), een maat afgeleid door deep learning, 
een transdiagnostische marker is voor hypoarousal veroorzaakt door 
doorslaapproblemen, en gelijktijdig aanwezige slechte impulscontrole 
(en niet zozeer een directe indicator is voor impulsiviteit). 
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Frontocentrale bèta-activiteit heeft bovendien behandeluit-
komst-voorspellende capaciteiten. Specifiek vonden we dat de 
SEB-waarschijnlijkheid de behandelresultaten voorspelt voor de-
pressie op een medicatie-specifieke manier, terwijl bèta-activiteit in 
frontocentrale gebieden voorspellend is voor meisjes met ADHD. De 
resultaten leverden inzichten op in de complexe interactie tussen 
regulerende mechanismen die slaap, arousal en affect beheersen.

Samenvattend benadrukken de bevindingen het potentieel van het 
toepassen van een netwerk-gebaseerde en RDoC-benadering in bio-
markeronderzoek. De integratie van objectieve maten, zoals EEG, 
genetica en slaapdata, biedt hoop voor toekomstige onderzoeken 
naar biomarkers die behandelsresultaten voorspellen. Hoewel dit 
proefschrift niet direct leidt tot veranderingen in de psychiatrische 
zorg, betreft het een noodzakelijke eerste stap naar toekomstige 
ontwikkelingen in wetenschappelijk onderzoek naar biomarkers. 
Al met al onderstreept dit proefschrift een verschuiving naar meer 
gerichte benaderingen in vergelijking met huidige behandelingspar-
adigma’s, die uiteindelijk kunnen leiden tot een beter begrip van psy-
chiatrische stoornissen en verbeterde behandelresultaten.
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IMPACT PARAGRAPH

While the findings of this work do not directly translate to psychiat-
ric care, this thesis represents a necessary first step forward in shift-
ing from traditional psychiatry towards personalized care (tailor-
ing treatments to each individual’s unique neurobiological profile), 
highlighting an intermediate phase known as stratified psychiatry. 
In traditional psychiatry, diagnoses like depression typically rely on 
symptom clusters, which may not comprehensively represent the 
fundamental underlying mechanisms of mental disorders, given their 
heterogeneous symptomatology. However, treatment decisions often 
adhere to a one-size-fits-all approach informed by diagnosis due to 
the absence of biomarkers reliably predicting treatment outcomes for 
individual patients. Consequently, this approach yields varied treat-
ment responses and lacks precision in therapeutic interventions.

Central to this thesis is the transition from these diagnostic bound-
aries to a transdiagnostic approach. Transdiagnostic biomarkers 
can facilitate in patient stratification, which involves subgrouping 
patients who are more susceptible to responding to one relative to 
another treatment, thus potentially improving treatment outcomes. 
This thesis offers a transdiagnostic framework for future research on 
biomarkers predicting treatment response. 

Here, the focus was on uncovering common brain patterns through 
electroencephalography (EEG) across various psychiatric disorders. 
Therefore, objective (‘ground-truth’) measurements, including poly-
genic (risk) scores (PRS), actigraphy and continuous performance 
tasks, were associated to EEG networks and signatures to elucidate 
the underlying neurobiological mechanisms of treatment response.
A novel methodology was introduced for understanding and predict-
ing treatment outcomes in psychiatric disorders, aiming to identify 
transdiagnostic brain markers to improve treatment response and 
remission rates. To achieve this, a proof-of-concept “genetics-in-
formed, data-driven data-reduction approach” was presented, where 
multiple functional brain networks were extracted from EEG data 
within large and heterogenous cohorts. Subsequently, association 
analysis with PRS for antidepressant response (the ground-truth) 
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was performed in order to select biologically meaningful networks 
that may have genetic underpinnings linked to treatment response. 
Hereby, the limitations of subjective measures and biases inherent 
in traditional classification systems were overcome. The approach’s 
value was confirmed through two studies, the proof-of-concept study 
and follow-up study, both demonstrating the capability of the identi-
fied networks for treatment prediction.

Genome-wide association studies (GWAS) typically demand large 
sample sizes, often ranging from several thousand to tens of thou-
sands of individuals, to achieve sufficient statistical power to find 
genetic variants associated with specific traits or diseases. In con-
trast, PRS calculation cumulates the weighted effects of numerous 
common genetic variants identified through GWAS. Thus, by utiliz-
ing ground-truth PRS data extracted from expansive GWAS datasets, 
we were able to detect biologically plausible networks, even when 
working with smaller yet still substantial sample sizes for EEG-PRS 
association analysis.

The age-related posterior alpha network, probably reflecting neuro-
developmental trait characteristics, is interesting as it represents a 
promising biomarker for stratification, due to its stability over time 
and predictive capacities for treatment outcomes in depression. Fu-
ture research should focus on further investigation of this network, 
as it holds the potential to provide significant insights into the devel-
opment of targeted interventions that may have long-term prognos-
tic value for psychiatric disorders.

Exploring objective neuropsychological measurements in relation 
to an EEG signature in frontocentral brain regions, known as spin-
dling excessive beta (SEB), has provided valuable insights into the 
relationship between SEB, impulse control, and sleep. Results em-
phasized the significance of addressing sleep maintenance problems 
in treatment planning for all psychiatric patients. Additionally, it has 
become evident that frontocentral beta activity holds potential as 
a transdiagnostic brain marker for predicting treatment outcomes 
across various psychiatric disorders.
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Furthermore, the development of a deep learning algorithm for the 
automatic detection of SEB presents a promising opportunity to 
streamline the detection process, alleviating the workload for clini-
cians and researchers, and facilitating large-scale studies on objec-
tively determined SEB.

At last, our findings notably elucidated sex-specific effects, highlight-
ing the importance of conducting research separately for men and 
women while considering diverse medications or treatment proto-
cols. Additionally, medication-specific effects emerged not only for 
treatments with distinct modes of action, but also for medications 
presumed to be largely comparable, like the selective serotonergic 
reuptake inhibitors escitalopram and sertraline. Accounting for these 
potential differential effects in analyses on treatment prediction can 
pave the way for more tailored and effective interventions.

Looking ahead, I envision stratified psychiatry as a crucial transition-
al phase toward a more precise and personalized approach. Recogniz-
ing the necessity of biomarkers for this objective, I propose shifting 
away from the current diagnostic boundaries and embracing a re-
search focus on a transdiagnostic approach as introduced in this the-
sis, which is grounded in objective measures such as genetics. How-
ever, it is essential to acknowledge the challenges ahead. Biomarker 
research in psychiatry faces many obstacles, necessitating collabora-
tion across multiple clinics, large-scale data collection, validation in 
independent samples, and implementation studies to confirm their 
clinical utility, enhance predictive accuracy, and ultimately realize 
their full clinical potential.

Transdiagnostic biomarkers for stratification, when integrated into 
clinical care, can help clinicians in selecting treatments that are most 
likely to be effective for a particular patient, which could minimize 
the trial-and-error process associated with psychiatric treatments 
and leading to quicker symptom relief and remission. Nevertheless, 
clinical observation remains a fundamental aspect of psychiatric 
practice. While biomarkers can guide treatment decisions, they may 
not capture the full spectrum of an individual’s presentation. Clinical 
observation enables clinicians to see nuances in psychiatric symp-
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toms that biomarkers may overlook, and to incorporate other factors, 
such as social and environmental influences, into the treatment plan 
to enhance overall well-being.

In summary, this doctoral thesis offers a transdiagnostic framework 
for future research focused on stratified psychiatry and implementa-
tion studies, with the potential to revolutionize our understanding 
and treatment of psychiatric disorders.
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