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1.1  MAJOR DEPRESSIVE DISORDER & TREATMENT

Throughout history, major depressive disorder has been thor-
oughly described, often known as melancholia (i.e. Hippo-
crates, 1923). Despite different terminology and the various 

explanations that were given by e.g. shamans, philosophers, and cler-
gymen, old descriptions of the disease (Telles-Correia & Marques, 2015) 
show remarkable similarities to our 20th and 21st century classification 
for major depressive disorder (MDD; Diagnostic and Statistical Man-
ual of Mental Disorders: DSM-5, 2013). Symptoms include a depressed 
mood most of the day (nearly every day), loss of interest in daily activi-
ties, diet independent weight loss or weight gain, fatigue, and feelings 
of worthlessness or guilt. This mood disorder is characterized by a 
long-lasting course, which in many cases turns into a chronic problem. 

In the course of history, various treatments have been proposed, rang-
ing from rituals in ancient Mesopotamia in the second millennium 
B.C. (Reynolds & Wilson, 2013), dietary restrictions, bloodletting and 
compound medicines in the seventeenth century (Burton, 1883), to 
cocaine and psychoanalysis around the turn of century in 1900 (Grin-
spoon & Bakalar, 1981). Yet, even in the current era of modern medi-
cine, patients and doctors are still facing the challenges of combating 
this disease. The most common current treatments are antidepres-
sant medication or psychotherapies like cognitive behavioral therapy 
(CBT). 

Serotonin reuptake inhibitors (SSRIs, such as escitalopram and ser-
traline) are nowadays within the most commonly prescribed antide-
pressants (ADs). Although growing evidence indicates improvement 
in mild depression with ADs (Hieronymus et al., 2019; Stewart et al., 
2012), ADs are usually seen as most effective only for people suffering 
from moderate to severe depression (Fournier et al., 2010). The pre-
sumed mechanism of action is the restriction of serotonin reuptake 
into the presynaptic cell. 
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Reuptake inhibitors of both serotonin and norepinephrine (SNRIs, 
such as venlafaxine) are also prescribed in large numbers and are pre-
sumed to limit the reuptake of the neurotransmitter norepinephrine 
in addition to serotonin. Theories on the working mechanisms are 
still not unequivocally proven, but these drugs serve many patients 
suffering from this disorder.

Psychotherapy (including CBT) is also a commonly applied treatment 
of MDD. The effectiveness of AD and psychotherapy treatment is sim-
ilar (Cuijpers et al., 2008), but especially a combination of the two is 
considered to be superior to medication or CBT alone (Cuijpers et al., 
2014; Cuijpers et al., 2009). For ADs alone, clinical e�cacy ranges from 
37% remission after a first antidepressant (AD) prescription to declining 
remission rates of respectively 31%, 14%, and 13% only, after each con-
secutive AD trial including augmentation strategies (Rush et al., 2006).

Disconcerting is the large (and continuously growing) prevalence of 
MDD in the world: while in 2005 183 million people were reported to 
be affected, this number increased to 216 million in 2015 (Vos et al., 
2016), a large increase compared to the world population growth in 
this period (The World Bank, Population total). Publication bias and 
other biases plague the formation of scientific foundations for psycho-
therapy (Cuijpers et al., 2019) and the development of new antidepres-
sant medication is subjected to suspended research and development 
budgets for central nervous system drugs, including ADs (Miller, 2010). 
New approaches to the treatment of MDD are needed to serve a grow-
ing group of people affected by this disorder.

1.2  BIOMARKERS
In a wide range of clinical applications, biomarkers become more and 
more important for providing health care that is adjusted to the lev-
el of the individual patient, otherwise known as personalized med-
icine. Biomarkers give us information on the presence of an illness 
or determining the right treatment. They give us the opportunity of 
doing measurements on the biological level, which opened up a new 
world of possibilities in hospital settings and the like (i.e. in digestive 
diseases, Carethers, et al., 2015, or in lung cancer, Rosell et al., 2013). 
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In the field of mental health, it is hard to find clinically accepted bio-
markers for disorder detection and treatment. Decades of research 
has provided us with little solid evidence and replication. For MDD, 
several biomarkers derived from electrophysiological characteristics 
of the brain have been proposed, but their true effectiveness was re-
cently questioned by Widge and colleagues (2019). Possibly contrib-
uting to the reservations about biomarkers’ effectiveness, is that the 
predictive value of the most promising electrophysiological biomark-
ers has rarely (or possibly never) been tested prospectively.

1.3 ELECTROENCEPHALOGRAPHY
To establish electrophysiological characteristics of the brain that 
could be used as biomarkers, measurement of the electroencepha-
logram (EEG) is being used. In 1929, Hans Berger presented his ob-
servations of brain activity in the EEG to the world (Berger, 1929), 
being one of the first to study different patterns of human brain ac-
tivity through this method. His son would become one of his most 
tested subjects, in whom Berger discovered the signifying alpha EEG 
rhythm. It appears when the eyes are being closed, and is attenuated 
by opening the eyes (see figure 1.1). 

Figure 1.1: A segment from the first reports of the human EEG by Hans Berger (1929). The 
figure represents a segment with what he called the ‘alpha rhythm’. The tracing underneath 
is a generated 10 Hz sine wave. From: Berger (1929).

The alpha rhythm studied by Berger consists of neural oscillations, 
i.e. rhythmic or repetitive neural activity in the central nervous sys-
tem, between 8 and 12 Hz (voltage increases and declines 8 to 12 times 
per second). It reflects a state in which millions of cortical neurons 
oscillate synchronously with the same phase and within a compara-
tively narrow frequency range (Klimesch, 1999).

For thirty years, the EEG was mainly visually analyzed. This changed 
in the late 1960’s, when digital equipment became available that al-
lowed researchers to apply Fourier analysis to EEG data, to extract 



14

frequency properties of a signal. Neural oscillations are traditionally 
being grouped into different frequency bands. This is useful when 
oscillations in a particular range of frequencies is the topic of interest 
– such as for example the alpha rhythm.

The synchronization of brain activity as measured by alpha waves, 
is foremost visible in the posterior part of the brain, in the occip-
ital cortex. However, activity within this frequency range can be 
measured in other brain areas as well, and are presumably linked to 
several cognitive and mental processes. A vast amount of literature 
exists on alpha oscillations and what they represent. Alpha activity is 
traditionally seen as an idling rhythm (e.g. Pfurtscheller et al., 1996). 
A more active role of alpha oscillations, i.e. involvement in inhibition 
processes, dominates the current view on its role (Jensen et al., 2002; 
Klimesch et al., 2006; van Dijk et al., 2008). In this dissertation, the 
focus will be directed towards the role of alpha activity in MDD.

1.4  FRONTAL ALPHA ASYMMETRY AND DEPRESSION
In 1936, Lemere was the first to link low alpha activity to depression 
(1936). He inspected EEGs of healthy people and several psychiatric 
patients and concluded: “…The ability to produce “good” alpha waves 
seems to be a neurophysiological characteristic which is related in some 
way to the affective capacity of the individual” (Lemere, 1936, p. 374). 

The presumed connection between alpha power and affect became 
more pronounced when asymmetry between hemispheres in the al-
pha frequency range was investigated in relation to depression (d’Elia 
& Perris, 1973). The objective in subsequent studies was to measure 
either more relatively right- or left-sidedness in alpha power, and 
relate this to depressive symptoms. By 1983, a group led by Richard 
Davidson started publishing on alpha asymmetry, focusing on frontal 
areas after they found no relation between symptoms and parietal 
alpha (Schaffer et al., 1983). Frontal alpha asymmetry (FAA) was cal-
culated by subtracting alpha power of electrode F3 (which is located 
over the left dorsolateral prefrontal cortex, or DLPFC) from alpha 
power of electrode F4 (over the right DLPFC). The research group 
investigated affective capacities in terms of this FAA, and formulated 
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the diathesis model, a framework in which approach and avoidance 
form the basis (Davidson and Tomarken in 1989, described in Hen-
riques & Davidson, 1991). 

The diathesis model of approach and avoidance states that people 
showing a relative excess of alpha on the left side (compared to right) 
are characterized by more negative affect and withdrawal related 
emotion (see also Davidson, 1998). Conversely, people showing the 
opposite with a relative alpha excess on the right side, show more 
positive affect and approach behavior. When Henriques and David-
son (1991) found relatively more left-sided FAA in depressed patients 
and more right-sided FAA in healthy controls, they interpreted these 
findings as a deficit in the approach system in humans with left-sid-
ed FAA. These patients were said to be more prone to certain neg-
ative affect states and depressive disorders, given a certain level of 
environmental stress. This was endorsed by Harmon-Jones and Allen 
(Harmon-Jones & Allen, 1997), who concluded that FAA “…may hold 
prognostic value for identifying those at risk for psychopathology charac-
terized by a deficiency in approach motivation (e.g. depression)”.

During the late 1990’s and 2000’s, more studies on FAA and depression 
were published. Results appeared more ambiguous than expected, and 
some doubt arose whether FAA could actually reliably differentiate 
those at risk for depression from healthy humans. Instead of assum-
ing homogeneity in this patient group, it seemed more heterogenic in 
terms of FAA. Rather embracing such heterogeneity, a prognostic effect 
of FAA was found (Arns et al., 2016): for females, right-sided FAA was 
associated with response and remission to the SSRIs escitalopram and 
sertraline, and left-sided FAA was associated with non-response and 
non-remission. No such effects were found for males.

1.5  EEG PAROXYSMS AND TREATMENT EFFECTS
In the clinic, EEGs are used for diagnostics in a large variety of cen-
tral nervous system disorders, including epilepsy, coma, or assess-
ment of sleep disorders. In these applications, brain activity is typ-
ically directly linked to observable human behavior, functioning or 
phenomena. In these circumstances, EEGs may show spike-wave 
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discharges, diffuse slowing or fragmentation of sleep cycles. Slowing 
of the EEG in the form of a slow background pattern can be captured 
by determining the alpha peak frequency (APF) or the dominant fre-
quency (which has a broader frequency domain: 5-15 Hz compared to 
7.5-13 Hz in the APF).

Only few studies explored how the EEG may relate to treatment ef-
fects in affective disorders. On this topic, Boutros and colleagues 
theorized “…that milder degrees of increased neural excitability (i.e., a 
subthreshold excitation insu�cient to cause seizures) may nonetheless be 
capable of causing observable phenotypic changes” (Boutros et al., 2015). 
Examples are presented in figure 1.2. See chapter 4 for a more detailed 
description of different types of abnormalities and their associations 
to MDD and ADs. These subclinical abnormalities are reported in 
3–5% of patients with MDD, a rate similar to controls (1–6%: Arns et 
al., 2017; Arns et al., 2008; Goodwin 1947; Lennox-Buchtal et al., 1960; 
Monin et al., 2018; Oh et al., 2018; Richter et al., 1971; Shelley et al., 
2008). Arns and colleagues (2017) showed that a subgroup of MDD pa-
tients with abnormal EEG patterns was more likely to not respond to 
the ADs escitalopram and venlafaxine, whereas response to sertraline 
was not different for patients with or without EEG abnormalities. 
These findings suggest that patients with both MDD and abnormal 
EEGs may differentially respond to AD treatment.

1.6  COMPUTER ASSISTED EEG INTERPRETATION
Conventionally, visual inspection of the human EEG is used in sev-
eral situations. A neurologist inspects the EEG by examining the 
background pattern, or searching for deviant, epileptiform activity. 
Various quantitative EEG analyses exist, ranging from elementary as-
sessment of the posterior dominant rhythm with a Fourier transform 
transform (Lodder & van Putten, 2011), to the use of machine learn-
ing, including deep learning (Tjepkema-Cloostermans et al., 2018; 
Van Leeuwen et al., 2019; da Silva Lourenço et al., 2020). Algorithms 
based on machine learning could autonomously detect patterns that 
are invisible to the human eye, which would be suitable for the digi-
tally recorded EEG. When providing su�cient data, deep learning is 
capable of learning a hierarchical feature representation automati- 
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Figure 1.2: Examples of EEG segments of 3 seconds, showing normal activity (A, montage: 

linked ears) and subclinically abnormal activity: sharp activity (B, montage: bipolar) diffuse 

slowing (C, montage: linked ears). Filter settings: 0.5-35 Hz.

cally, it effectively learns by example (Tjepkema-Cloostermans et al.,
2018). If a good deep learning paradigm is being developed, this 
would provide a more reliable alternative to the visual inspection of 
EEGs, because it does not suffer from the low interrater reliability of 
visual inspection: when classifying 300 EEGs as normal or containing 
seizures or epileptiform discharges, from a general clinically hetero-
geneous population, six board-certified neurophysiologists achieved 
an agreement (Fleiss’s kappa) of 55% (Grant et al., 2014). Recent stud-
ies employing deep convolutional networks revealed remarkable dis-
tinctions between normal and EEGs with deviations. Studies focused 
on detecting interictal epileptiform discharges (IEDs) demonstrated 
substantial areas under the curve (AUC in ROC analyses) of 0.94 and 
0.96 (respectively Tjepkema-Cloostermans et al. (2018) and da Silva 
Lourenço et al. (2020)). An AUC of 0.917 was achieved in a study fo-
cused on the distinction between normal and abnormal EEGs (Van 
Leeuwen et al., 2019).
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1.7  EEG IN PSYCHIATRY
At present, no evidence-based clinical applications of EEG in psychi-
atry exist. Historically, this is interesting, as neurology and psychia-
try do originate from one medical field in the 19th century (Baker et 
al., 2002). With discoveries in neuroanatomy and neuropathology at 
that time, the possibility of localizing diseases in the central nervous 
system shaped the discipline of neurology (Kazamel, 2018). However, 
the lack of a biological basis for mental disorders contributed to the 
expansion of psychoanalytical psychiatry, ultimately ending in the 
definitive split between neurology and psychiatry in the 20th century 
(Baker et al., 2002). As a result, EEGs are rarely investigated or de-
ployed in psychiatry (Boutros, 2018). This, to the dissatisfaction of 
professionals who regard the division between neurology and psy-
chiatry not a realistic one, and advocate a more integrated approach 
to diseases and disorders (Boutros, 2018; Reilly, 2015). 

1.8  AIMS AND OUTLINE OF DISSERTATION
The primary aim of this doctoral dissertation was to investigate the 
value of neurophysiological biomarkers measured by the EEG, in the 
prognosis of treatment outcome in depression. Through this aim, we 
wished to add to integrating scientific approaches of psychiatry and 
neurology, transcending the currently conventional boundaries be-
tween medical fields, by utilizing neurophysiological methods in the 
treatment of mental disorders, in this specific case major depressive 
disorder, or MDD. 
To investigate the value of EEG biomarkers for improvement of 
treatment, we asked ourselves the following questions:

1. Is the depressed population best characterized by homogeneity or heterogeneity?
2. What can we learn from state, trait, and drug effects on the biomarkers FAA and  
 abnormalities in the EEG?
3. What can we learn about the underlying pathophysiology when studying the time course of  
 biomarkers?
4. Can EEG biomarkers be reliably implemented for the treatment of depression?
5. Which circumstances are needed to provide patients and professionals with trustworthy 
  advice?
6. Can we automate the detection of EEG abnormalities presumed relevant for psychiatry?
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Chapter 2 focuses on frontal alpha asymmetry (FAA), and its pre-
sumed diagnostic properties. Contradictory study outcomes in the 
past motivated us to review these results and perform a meta-anal-
ysis. To explain discrepancies between studies, we employed post-
hoc analyses for uncovering factors that possibly underlie these 
discrepancies. In chapters 3 and 4, we studied the time-course of 
two prognostic biomarkers (FAA and subclinical abnormalities in 
the EEG) over a period of eight weeks of antidepressant treatment. 
State, trait and drug effects were investigated, along with whether 
the time-course provides information about the etiology in earlier 
described subgroups. In an effort to automate the visual assessment 
of the proposed prognostic biomarkers (i.e., subclinical abnormal 
EEG activity) we investigated and combined several methods which 
are described in chapter 5. We employed frequency and spectral anal-
ysis, deep learning and random forest models. Eventually, in chapter 
6, we report how we tested the feasibility and clinical effects of an 
EEG informed treatment allocation algorithm in a prospective fea-
sibility study. 
Findings are integrated in the general discussion, chapter 7.
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ABSTRACT

Introduction
Frontal alpha asymmetry (FAA) has frequently been reported as poten-
tial discriminator between depressed and healthy individuals, although 
contradicting results have been published. The aim of the current study 
was to provide an up-to-date meta-analysis on the diagnostic value 
of FAA in major depressive disorder (MDD) and to further investigate 
discrepancies in a large cross-sectional dataset.

Methods and materials
SCOPUS database was searched through February 2017. Studies were 
included if the article reported on both MDD and controls, provided an 
FAA measure involving EEG electrodes F3/F4, and provided data re-
garding potential covariates. Hedges’ d was calculated from FAA means 
and standard deviations (SDs). Potential covariates, such as age and 
gender, were explored. Post hoc analysis was performed to elucidate 
interindividual differences that could explain interstudy discrepancies.

Results
Sixteen studies were included (MDD: n = 1883, controls: n = 2161). Af-
ter resolving significant heterogeneity by excluding studies, a non-sig-
nificant Grand Mean effect size (ES) was obtained (d = -0.007; CI = 
[-0.090] – [0.075]). Cross-sectional analyses showed a significant 
three-way interaction for Gender × Age × Depression severity in the 
depressed group, which was prospectively replicated in an indepen-
dent sample.

Conclusions
The main result was a non-significant, negligible ES, demonstrating 
limited diagnostic value of FAA in MDD. The high degree of hetero-
geneity across studies indicates covariate influence, as was confirmed 
by cross-sectional analyses, suggesting future studies should address 
this Gender × Age × Depression severity interaction. Upcoming studies 
should focus more on prognostic and research domain usages of FAA 
rather than a pure diagnostic tool. 
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2.1  INTRODUCTION

With a lifetime prevalence of 16.2% in the United States, 
major depressive disorder (MDD) is a common disor-
der affecting many people (Kessler et al., 2003). Projec-

tions for 2030, reported by the WHO, show that MDD will become 
the second most debilitating disease worldwide (Mathers & Loncar, 
2006). However, despite many pursuits of research groups into im-
proving diagnostics and prognostics, MDD prevalence is still high 
(Patten et al., 2016). Improving differential diagnostic procedures 
should lead to a more reliable distinction between MDD and other 
mental disorders with overlapping symptoms, ultimately enabling 
better prognosis with more effective treatment.

Changes in affect, in particular a depressed mood, are one of the di-
agnostic criteria of MDD (Diagnostic and Statistical Manual of Mental 
Disorders: DSM-5, 2013). A model that focuses on affect, also known as 
the approach-withdrawal hypothesis, was developed to describe basic 
features of emotional affect (later described as the diathesis model 
by Davidson and Tomarken in 1989 [Henriques & Davidson, 1991]). 
According to this model, two major motivational systems in response 
to stimuli exist: one is appetitive whereas the other is aversive. This 
corresponds to positive and negative affect respectively, inducing 
approach or withdrawal behavior. The balance in the activation of 
these systems is also assumed to be reflected in differential activity 
in the EEG. In particular, anterior left activation (reflected by rela-
tively diminished anterior left alpha activity, compared to right) was 
hypothesized to correspond with appetitive behavior (approach), and 
anterior right activation (reflected by relatively diminished anteri-
or right alpha activity, compared to left) was hypothesized to corre-
spond to aversive behavior (withdrawal; Davidson, 1984; Kelley et al., 
2017). This asymmetry between left and right frontal alpha is referred 
to as frontal alpha asymmetry (FAA).
Initial EEG studies comparing depressed people with controls indeed 
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provided evidence for left-sided FAA (higher left than right frontal 
alpha activity) in depressed patients (Bell et al., 1998; Debener et al., 
2000; Gotlib et al., 1998; Henriques & Davidson, 1991; Pizzagalli et 
al., 2002), compared to a dominant right-sided FAA in controls (Fin-
gelkurts et al., 2006; Schaffer et al., 1983). Note that left-sided FAA is 
inversely related to relatively greater right than left cortical activity, 
as cortical processing typically results in a reduction of synchronous 
rhythmic activity (e.g. a reduction in alpha power). A significant cor-
relation between FAA and Behavioral Activation System (BAS) sensi-
tivity (of which low scores indicate a predisposition toward certain 
types of MDD), suggested that this pattern of FAA “…may hold prog-
nostic value for identifying those at risk for psychopathology characterized 
by a deficiency in approach motivation (e.g. depression)” (Harmon-Jones 
& Allen, 1997). Furthermore, left-sided FAA is hypothesized to specifi-
cally expose subgroups reporting anhedonia (a common MDD symp-
tom described as diminished interest or experience of pleasure), while 
anxious apprehension, related to an opposite pattern of right-sided 
FAA, might possibly mark another subgroup (Nusslock et al., 2015). 
Defining such subgroups needs further investigation.

Although recent studies have confirmed an association between MDD 
and FAA (Beeney et al., 2014; Gollan et al., 2014; Jaworska et al., 2012; 
Kemp et al., 2010), which was also reflected by two reviews (Baskaran 
et al., 2012; Fingelkurts & Fingelkurts, 2015), multiple methodologi-
cally sound studies have failed to confirm the diagnostic value of FAA 
regarding MDD and other mental illnesses (Allen et al., 2004; Car-
valho et al., 2011; Deldin & Chiu, 2005; Gold et al, 2013; Kaiser et al., 
2016; Kentgen et al., 2000; Knott et al., 2001; Mathersul et al., 2008; 
Price et al., 2008; Quraan et al., 2014; Reid et al., 1998), including the 
largest EEG study to date in MDD in a sample of 1008 MDD patients 
compared to 336 controls (Arns et al., 2016) from our research group. 
Questions should be raised on the uniformity and generalizability of 
all studies regarding FAA. This concerns technical properties of the 
EEG recordings and further processing of the data, as well as sam-
ple characteristics. This makes updating previous reviews and a me-
ta-analysis relevant, with adding results of more recent studies.
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A decade ago, Thibodeau, Jorgensen and Kim (2006) addressed the 
use of FAA in a meta-analytic review, including a maximum of 1614 
adults (depressed and healthy, exact sample size is unknown), and 
concluded that depression is meaningfully related to relatively great-
er right than left frontal cortical activity at rest (left-sided FAA), with 
moderate weighted mean effect sizes (ES) for the depressed adults 
with Pearson r = 0.26 and Cohen’s d = 0.54. Their meta-analysis did 
not include recent large methodologically sound studies and had sev-
eral limitations, e.g. it included a wide range of groups defined by 
other characteristics than an MDD diagnosis or defined as sub-clini-
cal MDD characteristics, FAA measures based on different scalp sites, 
and different types of ESs as reported in original articles. When con-
trolling for sub-clinical MDD, the authors found an equally moder-
ate ES for FAA with r =0.27, indicating a limited influence of opera-
tionalization of depression. Several studies and reviews (Davidson, 
1998; Hagemann et al., 1998; Jaworska et al., 2012; Segrave et al., 2011; 
Smith et al., 2017; Stewart et al., 2010; Thibodeau et al., 2006) have 
indicated that methodological aspects could explain discrepant find-
ings, such as the EEG reference montage and frequency range con-
sidered. Further, the FAA calculation is not often discussed in studies 
and reviews, but varies in normalization application. Normalizing by 
dividing F4 - F3 by its sum (F4 + F3) enables researchers to rule out 
interindividual EEG differences like individual EEG power (as a result 
of skull thickness for instance).

The purpose of the current study was to provide an up-to-date me-
ta-analysis, further clarifying the role of FAA in MDD using a stan-
dardized approach. This is achieved by calculating a weighted mean 
effect size (ES) only based on original means and standard deviations 
(SDs), obtained from EEG electrode F3 and F4 only and using a more 
homogenous sample with clear inclusion criteria (MDD vs non-MDD 
only, excluding subclinical samples). Furthermore, we also used data 
from a large cross-sectional dataset (MDD: n = 938, Controls: n = 306) 
to investigate interindividual differences, and the impact of method-
ological aspects such as EEG montaging and use of normalization.
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2.2  METHODS AND MATERIALS
A literature search was carried out in SCOPUS for the period up until 
February 2017, using the query “depression AND EEG OR electroen-
cephalogram AND alpha asymmetry”, which yielded 172 hits. The da-
tabase search outlined above was supplemented by manual searches. 
To identify additional publications, we further inspected reference 
lists from prior meta-analyses (Thibodeau et al., 2006) and reviews 
(Fingelkurts & Fingelkurts, 2015; Jesulola et al., 2015). PRISMA guide-
lines for conducting and reporting systematic reviews were followed 
during this analysis (Moher et al., 2009).

Studies had to meet the following inclusion criteria: (a) DSM-IV diag-
nosis of MDD or MDD classification after a structured clinical inter-
view using the SCID or MINI; (b) availability of mean, standard de-
viation (SD), and sample size of resting FAA (electrode F4 minus F3); 
(c) availability of a healthy control group; (d) reporting of EEG ref-
erence montage; (e) published in English. When means, SDs and/or 
sample sizes were not provided in the article, authors were e-mailed 
to request the relevant data. Additional subject information on the 
following variables was gathered: mean age and SD, comorbid classi-
fications (% and type of comorbidity), comorbid anxiety, medication 
status (% receiving an antidepressant), gender (% female), depression 
severity mean and SD. For each study, we also recorded the year of 
publication, reference montage, resting EEG condition (eyes open 
(EO), eyes closed (EC), or both), recording length, alpha bandwidth 
and continent where the study is carried out.

Statistical analyses were performed using SPSS 17.0. MetaWin 2.1 
(Rosenberg et al., 2000) was used to conduct the meta-analysis and 
generate all variables of interest. ESs (the standardized mean differ-
ence Hedges’ d) were calculated based on the FAA statistic from the 
MDD group and control group means and SDs. This ES is a scale-free 
statistic, thereby allowing comparison of scores from various studies. 
A grand mean ES was calculated with a 95% confidence interval (CI) 
providing the weighted mean ES for all studies. Larger ES values in-
dicate stronger clinical relevance. Furthermore, Qt (heterogeneity of 
ESs), and the failsafe number (Rosenthal’s method: α < 0.05, and Or-
win’s method) were calculated. The fail-safe number is the number 
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of studies indicating how many unpublished null findings are needed 
to render an effect non-significant. When the total heterogeneity of a 
sample (Qt) was significant – indicating that the variance among ESs 
is greater than expected by sampling error – the study contributing 
most to the significance of the Qt value was excluded from further 
analysis for that variable until the Qt value was no longer significant. 
This was done for a maximum of three iterations. If more than three 
studies needed to be excluded to obtain a non-significant Qt value, 
then other explanatory variables for the effects had to be assumed 
(Rosenberg et al., 2000) and were investigated in post hoc tests.

To investigate specific interstudy differences (or a lack thereof), the 
cross-sectional dataset of Arns et al. (2016) was used to elucidate in-
terindividual differences that could drive differences between stud-
ies. To this end, main and interactional effects of group, gender, age, 
depression severity (HRSD-17), and anxiety severity (HAM-A), were 
investigated through univariate ANCOVAs. To test the stability of 
the significant results in this paper across EEG reference montages 
and different FAA definitions, FAA was also analyzed after re-refer-
encing to Cz and the linked ears from the original average reference 
montage.

2.3  RESULTS
2.3.1  META-ANALYSIS

A total of 214 studies were identified between January 1998 and July 
2016. One additional relevant study was identified out of studies cov-
ered by an earlier meta-analysis (Thibodeau et al., 2006) and reviews 
(Baskaran et al., 2012; Fingelkurts & Fingelkurts, 2015; Jesulola et al., 
2015). A final search conducted in February 2017 yielded eight new 
hits, resulting in one extra study in the meta-analysis. See figure 2.1 
on page 28 for a flow diagram of the inclusion process.

Most excluded studies were not selected due to the absence of a con-
trol group (n = 58) or the absence of a clinical MDD group (n = 47). 
Sixteen studies (Arns et al., 2016; Baehr et al., 1998; Beeney et al., 
2014; Brzezicka et al., 2016; Cantisani et al., 2015; Carvalho et al., 2011; 
Deslandes et al., 2008; Gollan et al., 2014; Gordon et al., 2010; 
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Figure 2.1: Flow diagram of the inclusion process.

Jaworska et al., 2012; Kaiser et al., 2016; Keeser et al., 2013; Liu et al., 
2016; Quinn et al., 2014; Saletu et al., 1996; Segrave et al., 2011; Stew-
art et al., 2010) met all inclusion criteria and were included in this 
meta-analysis, see table 2.1 on pages 30 and 31 for an overview. Note 
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that only one study was included in both the previous meta-analysis 
by Thibodeau et al. (2006) and the current meta-analysis, because 
most of the other previous studies were either based on a depression 
group defined by solely a severity measure (no o�cial diagnosis), on 
continuous depression severity measures (no control group), or the 
requested means were not available.

Due to overlapping samples of Gordon et al. (2010) and Quinn et al. 
(2014), original data of these studies were requested and combined 
to prevent overlapping samples, now referred to as Gordon/Quinn. 
Note that Gordon et al. originally reported on electrode FC4 and FC3 
and Quinn et al. on the more frequently used F4 and F3. Considering 
the inclusion criteria of this meta-analysis, only F4 - F3 data were 
merged (this data was provided by BRAINnet). FAA Means, SDs and 
n were recalculated for the studies of Arns et al. (2016; analysis of 
original data for EC only as well as age means and SDs), Stewart et al. 
(2010; merging of subgroup data), and Brzezicka et al. (2016; merging 
of individual data). Additional statistics (means of (F4 - F3)/(F4 + F3) 
and SDs) and subject data were calculated for the data provided by 
Daniel Keeser of the neurophysiological research group of the Lud-
wig-Maximilians-University of Munich, Germany (Keeser et al., 2013). 
These data were updated with data from newly included subjects 
since the publishing of the cited conference abstract.
A total of 1883 MDD subjects and 2161 control subjects was included 
in the meta-analysis. A fixed-effects model meta-analysis yielded a 
significant heterogeneity test (Qt = 37.65, p = 0.001), a non-significant 
grand mean ES of −0.041 (CI = [-0.1204-0.0375]), and a fail-safe num-
ber of 11.4 (Rosenthal’s method) and 0 (Orwin’s method). The for-
est plot in figure 2.2, shown on page 32, and funnel plot in figure 2.3  
(page 33) show a graphical overview of the ESs and grand mean.
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Figure 2.2: Forest plot of the effect sizes (ES) of all included studies and the grand mean ES 
for all studies. The grand mean ES after resolving heterogeneity was −0.007 (not signifi-
cant). Numbers correspond to study numbers in table 2.1.

Exclusion of three studies (Baehr et al., 1998; Cantisani et al., 2015; 
Saletu et al., 1996) abolished the significant heterogeneity, resulting 
in a non-significant grand mean ES of −0.007 (CI = [-0.090-0.075]) 
and fail-safe numbers of 0 (Rosenthal’s method) and 0 (Orwin’s 
method). In subsequent post hoc analysis, we attempted to identify 
the source of heterogeneity (outlined below).
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Figure 2.3: Funnel plot of the study effect sizes (ES) and corresponding sample sizes, with 
the white line indicating  x= 0 and the dotted line indicating the grand mean ES = -0.041. 
Note that the largest studies with sample size N>200 all approach the same ES close to 0, 
suggesting that a sample size of 300 and larger is required to obtain stable and biologically 
plausible effects for FAA in MDD.

2.3.2  POST HOC TESTS

Post hoc, the influence of several potential moderators was investi-
gated. Detailed results can be found in supplement 2.5. One poten-
tially important moderator is the choice of the reference montage, 
which differs across the included studies. We performed post hoc 
tests where the relationship between study ES and reference mon-
tage was investigated. This did not result in significant ESs, or left 
the analyses with an insu�cient number of studies, and therefore 
insu�cient power, to achieve reliable results. Additional analyses 
(with combined montages as well as separated analyses per type of 
montage) between study ES and most potential moderators demon-
strated no significant correlations, including anxiety. This was in-
vestigated further in one of the included studies by Arns et al. (2016), 
who found no changes in results after excluding subjects diagnosed 
with comorbid anxiety (female responders showed greater alpha (less 
cortical activity) over the right frontal site, whereas non-remitters 
showed the opposite asymmetry). 
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2.3.3  CROSS-SECTIONAL ANALYSIS

To explain the different study outcomes, we used 1244 participants 
(out of 1344 subjects, these had successful EEGs combined with BDI 
scores) from the cross-sectional dataset iSPOT-D (Arns et al., 2016) to 
extract candidate factors that could influence FAA or explain differenc-
es between studies. No significant contribution of singular variables to 
FAA was found through univariate ANCOVA (variables included group 
and gender as fixed factors, and age, depression severity, and anxiety 
as covariates). Although no significant interaction effect was found for 
Group × Gender × Age × Severity, within the depressed group, a sig-
nificant three-way interaction of Gender × Age × Severity was found 
(F(1,930) = 6.096, p = 0.014) when these variables were exclusively part 
of the model, but this was not the case within the control group. Re-
placing depression severity with anxiety severity in this model did not 
yield any significant effects. To study the stability of Gender × Age × 
Severity across datasets, the same analysis was prospectively conducted 
in the Gordon/Quinn dataset (MDD: n = 93, controls: n = 1037). Note 
that one-sided testing of the replication of an interaction effect was 
not possible through ANOVA. Nevertheless, considering the a priori 
hypothesis and the smaller replication sample at hand, a more liber-
al criterion of p < 0.10 was employed. This replicated the significant 
three-way interaction effect as well (F(1,85) = 3.400, p = 0.069).

To visualize this three-way interaction, the Curve Fitting Toolbox in 
MATLAB 2016b (The Mathworks, Inc., Natick, MA) was used. In figure 
2.4, the linear fitting of the surface is illustrated, comparing females 
and males based on their FAA, age and depression severity. A pattern 
becomes visible where differences between females and males seem to 
exist for older and severely depressed subjects, especially from an age 
of approximately 53 years and older, with opposing effects for males 
compared to females. Based on these results, four groups were formed 
dividing young and old (<53 and ≥53 years old), and moderately and se-
verely depressed subjects (HDRS score <24 and ≥24, based on recent 
labelling of HDRS depression scores (Zimmerman et al. , 2013)). In these 
groups, univariate ANOVAs with gender, age, and severity as dependent 
variables were performed separately. No significant gender effects in 
FAA were found in both the young and moderately depressed groups. 
In the old, severely depressed group however, females had significantly 
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higher, i.e. right-sided, FAA than males (F(1,46) = 8.094, p = 0.007). This 
seems to drive the three-way interaction eff ect found earlier.

Figure 2.4: Linear fitted surface graph, visualizing the three-way interaction effect of frontal 
alpha asymmetry (FAA), age, and depression severity, separately for females and males.

The four defi ned groups were subsequently used to address the original 
question: Can a diagnosis of MDD be predicted using FAA? Univariate 
ANOVAs including only severely depressed, separately for males and 
females, and younger and older subjects (split up at 53 years) showed 
strikingly diff erent results. While no diff erences between controls and 
depressed were found for the younger groups (n = 243 and n = 288 re-
spectively), signifi cant diff erences were found in the older groups with 
a severe depression, both for males and females (respectively F(1,34) = 
4.806, p = 0.035, Cohen’s d = 0.71 and F(1,59) = 0.6791, p = 0.012, Cohen’s 
d = -0.69). Figure 2.5 illustrates that the direction of this eff ect is re-
versed for males and females, with relatively more left-sided FAA in de-
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pressed males, and more right-sided FAA for females. Repeating these 
ANOVAs by replacing severely depressed with moderately depressed 
yielded no significant effects. 
Comparing the different reference montages in the cross-sectional 
dataset through multivariate ANOVA did not result in significant group 
differences on FAA in either montage (see figure 2.6A), nor did strati-
fication by gender, suggesting that the lack of group effects cannot be 
simply explained by the EEG-montage used.

Figure 2.5: Line graphs with error bars (representing standard error of the means) depicting the 
difference in frontal alpha asymmetry (FAA) between controls and severely depressed patients, 
separately for males and females, and <53 years and ≥53 years. Positive values of FAA indicate 
greater alpha over right than left frontal site, negative values indicate the opposite.

To normalize interindividual differences FAA F4 minus F3 can be 
divided by its sum. However, most included studies calculated FAA 
only by the difference score F4 - F3 (see table 2.1). Although two mul-
tivariate ANOVAs comparing the different methods did not yield 
different results of FAA in depressed and controls, the absence of 
sum division can result in rather large differences in raw individual 
FAA scores, depending on which reference scheme is applied (see fig-
ure 2.6b). However, not dividing by the sum still did not render the 
non-significant group effect to significance.
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Figure 2.6a: Illustration of frontal alpha asymmetry (FAA) means and 95% error bars (rep-
resenting standard error of the mean) for controls and depressed patients, separately for the 
three different EEG reference schemes. b: Similar to a, except for the calculation of FAA without 
dividing by the sum of F4 and F3. Note the differences based on EEG reference montage, but 
also that none of these methodological changes changed the overall MDD-control contrast 
to a significant difference, illustrating that these methodological aspects could yield different 
outcomes, but do not explain the lack of ‘diagnostic’ effect of FAA in this large sample.

2.4  DISCUSSION
In this meta-analysis, the diagnostic value of FAA was investigated. 
The small and non-significant effect size approaching zero extracted 
from this meta-analysis, accompanied by highly significant heteroge-
neity across studies, suggest that FAA is not a reliable diagnostic bio-
marker for MDD. Furthermore, the funnel plot in figure 2.3 suggests 
that at least 300 subjects need to be included to obtain a stable and 
biological plausible effect for FAA in MDD, confirming that most stud-
ies have been underpowered that investigated the diagnostic value of 
FAA (cf. table 2.1). 
We could not identify a single variable that reliably explained a signifi-
cant portion of the variance in FAA findings across studies. Cross-sec-
tional analyses in the large iSPOT-D sample (Arns et al., 2016) were 
performed to explore possible candidate variables that have been 
suggested to explain differences between studies, e.g. EEG reference 
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montage, calculation of FAA with or without normalization, effects 
and interactions of gender, depression severity, anxiety severity, etc. 
A significant interaction effect of age, gender, and depression sever-
ity was found in depressed patients as visualized in figures 2.4 and 
2.5, and also prospectively replicated in an independent sample (Gor-
don et al., 2010; Quinn et al., 2014). This interaction implicated more 
right-sided FAA (relatively more cortical activity on the left than right 
frontal site) in severely depressed women aged 53 years and older, in 
contrast to relatively more left-sided FAA in severely depressed men 
of the same age. This finding suggests that when unequal gender dis-
tributions, age ranges, and depression severity are studied, this may 
result in non-generalizable results. This confirms our hypothesis that a 
high level of heterogeneity in FAA in the depression population exists, 
which is in line with previous methodologically sound studies (Deldin 
& Chiu, 2005; Kentgen et al., 2000; Knott et al., 2001; Price et al., 2008; 
Quraan et al., 2014). Consequently, the lack of consistency in the re-
sults is not in line with the approach-withdrawal model, which was 
hypothesized to predict a meaningful relationship between the degree 
of approach behavior and affect on one hand, and FAA on the other 
hand. Note that Davidson (1998) emphasized that his previously devel-
oped model of approach and withdrawal systems “…was never intended 
as a model of depression or any other form of psychopathology for that 
matter”. Differences in frontal asymmetry may thus reflect individual 
differences in affective style rather than being a pure diagnostic mark-
er for MDD (Davidson, 1998), thereby warranting its use more along 
the lines of Research Domain Criteria (RDoC) or Precision Medicine 
(Cuthbert, 2014). This is in line with the clear prognostic role of FAA, 
where a right frontal dominant FAA was associated with response to 
SSRIs and left frontal dominant FAA was associated with nonresponse 
to SSRIs in females (Arns et al., 2016). Translating this knowledge to 
prognostic methods in clinical practice, will allow health care profes-
sionals to personalize mental health treatments. 

To our knowledge, our finding, comprising three different factors 
(gender, age, depression severity) has not been reported before. Pre-
vious studies have not always included all three variables, or sample 
sizes might have been too small to detect this three-way interaction. 
Interestingly, a closely related interaction effect between gender and 
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severity was recently reported by Jesulola et al. (2017), reflecting an 
FAA pattern in severely depressed females, that is opposite to the 
traditionally hypothesized direction of FAA in MDD, which is lack-
ing in males. Note that age was not taken into account here. Previ-
ous studies in elderly showed no group differences in FAA (Kaiser et 
al., 2016), even when controlling for depression severity (Carvalho 
et al., 2011; Deslandes et al., 2008). On the one hand, age effects are 
not ruled out because increased neural heterogeneity in older adults 
has been found (Karch et al., 2015). Albeit, a large dataset of 6029 
subjects showed that FAA does not change across the lifespan in a 
healthy population (Hashemi et al., 2016). Furthermore, significant 
differences between healthy and depressed individuals were reported 
in younger samples from this meta-analysis (mean sample ages of 
29.4 and 35.7; in Beeney et al., 2014, and Gollan et al., 2014), but most 
likely these studies were underpowered (see funnel plot in figure 2.3). 
Therefore, the literature regarding more left-sided alpha in young 
and middle-aged depressed cannot be explained by current results. 
Other explanatory variables must be assumed, as the high level of 
heterogeneity suggests (Rosenberg et al., 2000).
Although the most frequently used EEG montage in the included 
studies is the average reference, other montages like Cz, and linked 
ears referencing are also common practice. Davidson (1998) and 
Hagemann et al. (1998) both made a strong case for enabling more 
consistent study outcomes by using average reference in FAA re-
search. A promising reference-free methodology in FAA research is 
current source analysis (e.g. Brzezicka et al., 2016). In particular Cur-
rent Source Density (CSD) is recommended for advanced EEG analy-
sis by both Kayser and Tenke (2015) and Stewart et al. (2014), avoiding 
the question how to reference data and by providing a more distinct 
topography. As the current meta-analysis contains no comparable 
CSD studies, we can only recommend the use of the average refer-
ence, based on our post hoc analyses. Not only its ability to correct 
for strong occipital alpha, but also the topographical proximity of Cz 
to F3 and F4, and the possible insensitivity to subtle but meaningful 
differences of the linked ears reference, make the average reference 
the best candidate. An additional advantage is its relative insensitiv-
ity for the choice whether or not the FAA difference score (F4 - F3) is 
divided by its sum (F4 + F3), as visualized in figure 2.6. This choice has 
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considerably more effect when applied to linked ears referenced data. 
Although the relative difference in FAA between depressed patients 
and controls is similar in any combination of reference scheme and 
FAA measure, we recommend the use of (F4 - F3)/(F4 + F3). Not di-
viding by its sum has large consequences for the degree of negativity 
of FAA in both groups.
A strong element in this meta-analysis was the calculation of an ES 
based on each study’s FAA means and SDs, as well as the application 
of clear inclusion criteria improving the consistency across studies. 
Unfortunately, this resulted in considerably fewer included studies 
than Thibodeau et al. (2006), albeit this meta-analysis included a sub-
stantially larger overall sample size (k = 16 vs k = 24 and n = 4044 vs 
n = 1614 for our meta-analysis and the meta-analysis by Thibodeau 
respectively). Furthermore, a consequence of excluding most previ-
ously included studies by Thibodeau and colleagues, the current is a 
completely new meta-analysis with respect to the entered datasets 
(apart from one study), instead of an extended meta-analytic data-
base. This might have caused a difference in findings. Nonetheless, 
we consider the consistency across studies superior to the quantity 
of studies. The inclusion of only sixteen studies did make it di�cult 
to compare studies based on several characteristics, regularly leaving 
us with groups too small to come to reliable conclusions. In part, this 
was overcome by performing cross-sectional analyses on the largest 
dataset in this meta-analysis (Arns et al., 2016) and cross-validation in 
a second dataset (Gordon/Quinn; Gordon et al., 2010, and Quinn et 
al., 2014). This enabled us to unravel patterns that would not have be-
come visible in a meta-analysis only, making the value of gender, age 
and MDD severity in relation to FAA evident, and need to be taken 
into account in future studies investigating FAA in MDD. The cur-
rent data did not allow for identifying additional subgroups showing 
symptoms such as anhedonia, comorbid anxious apprehension, panic 
or social phobia, but further studying contribution of these specific 
clusters of symptoms to FAA, could benefit the personalization of 
mental health treatments. Furthermore, a few state emotion manip-
ulations in EEG paradigms show greater FAA group differences than 
resting state EEG paradigms (Stewart et al., 2014). Although the num-
ber of these studies is too small to include in the current study, this 
method could enlarge the chance of determining subgroups. Finally, 
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reliability and consistency of measuring FAA might be improved by 
EEG recording across multiple sessions, as FAA is found to be mod-
erately stable across time (Allen et al., 2004; Vuga et al., 2006), as 
originally suggested by Davidson (1998). For a detailed and recent 
overview of studies on hemispheric asymmetry in depression, please 
see the review by Bruder et al. (2017).

The importance of replication of results has become increasingly ev-
ident, because many scientific claims in psychology and psychiatry 
are rebutted, or more intricate systems appear to be implicated. New 
insights suggest a different application of FAA, actually utilizing the 
interindividual variation in this biomarker. For instance, the predic-
tion of antidepressant treatment outcome using gender specific alpha 
asymmetry was first reported by Bruder et al. (2001) and replicated by 
Arns et al. (2016). Future studies into the use of FAA as a biomarker 
could help improve understanding of the basic dimensions under-
lying human behavior, and ultimately lead to improving treatment. 
This being one of the purposes of the use of Research Domain Cri-
teria (RDoC), future studies should be in line with this approach, in 
order to demonstrate the clinical relevance of FAA more as a domain 
criterion or prognostic biomarker, rather than a ‘diagnostic’ marker. 
We emphasize that individual differences should not be ignored, but 
rather embraced, thereby potentially leading to optimized character-
ization of relevant subgroups and subsequent implications for a per-
sonalized treatment for the increasing number of depressed patients.
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2.5  SUPPLEMENT
SUPPLEMENTARY INFORMATION ON THE POST HOC TESTING OF  

POTENTIAL MODERATORS OF FAA IN MDD

Since several included singular studies reported on multiple refer-
ence montages, we performed analyses on both “unique” data and 
“non-unique” data. For example: for the initial grand mean, average 
referenced data from Stewart and colleagues (2) was used. Their Cz 
data however, were also used for analysis of the Cz reference mon-
tage “non-unique” subgroup. When the heterogeneity test χ2 was 
significant, analyses where repeated without the study contributing 
most to heterogeneity (indicated with “excluding one study” col-
umn 2 in table S2.1). Calculating grand means per reference montage 
resulted in non-significant heterogeneity tests (see Prob (χ2) in ta-
ble S2.1) for all montages (after excluding one study for the average 
and Cz montages that contributed most to the significance). First 
analyses show that corresponding ESs were negligible (max. -0.07). 
Only for linked ears referenced data a small effect size of -0.23 with 
non-significant heterogeneity was found, after excluding one study 
contributing most to the significance. Corresponding fail-safe anal-
yses (both Rosenthal’s and Orwin’s methods) showed that it would 
take only a few null-findings (up to 6.5) to reduce ES to irrelevant.
Additional analyses (with combined montages as well as separate 
analyses per type of montage) showed no significant correlations be-
tween study ES and average age, gender distribution, sample size, 
MDD severity (ESs where calculated due to different depression 
severity measures), % medicated, % of comorbidity, % of comorbid 
anxiety, EEG recording length, mean alpha frequency, and width of 
the alpha frequency band. Handedness was not investigated, because 
either the subjects were all right-handed, or no information on this 
variable was available. One-way ANOVAs showed no significant dif-
ferences in study ES between resting EEG conditions (EO/EC) or 
continent of residence (both including and excluding international 
studies). A significant correlation was found for year of publication 
(r = 0.502, p = .048), although data was not collected continuous-
ly through the years. This effect was mainly driven by the two old-
est studies, which when removed deemed this effect reversed and 
non-significant.
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ABSTRACT

Introduction
Frontal alpha asymmetry (FAA) is a proposed prognostic biomarker in 
major depressive disorder (MDD), conventionally acquired with elec-
troencephalography (EEG). Although small studies attributed trait-like 
properties to FAA, a larger sample is needed to reliably asses this char-
acteristic. Furthermore, to use FAA to predict treatment response, de-
termining its stability, including the potential dependency on depres-
sive state or medication, is essential.

Methods and materials
In the international Study to Predict Optimized Treatment in Depres-
sion (iSPOT-D), a multi-center, randomized, prospective open-label tri-
al, 1008 MDD participants were randomized to treatment with escitalo-
pram, sertraline or venlafaxine-extended release. Treatment response 
was established eight weeks after treatment initiation and resting state 
EEG was measured both at baseline and after eight weeks (n = 453).

Results
FAA did not change significantly after eight weeks of treatment (n = 
453, p = .234), nor did we find associations with age, sex, depression 
severity, or change in depression severity. After randomizing females to 
escitalopram or sertraline, for whom treatment response could be pre-
dicted in an earlier study, FAA after eight weeks resulted in equivalent 
response prediction as baseline FAA (one tailed p = .028). 

Conclusion
We demonstrate that FAA is a stable trait, robust to time, state and 
pharmacological status. This confirms FAA stability. Furthermore, as 
prediction of treatment response is irrespective of moment of mea-
surement and use of medication, FAA can be used as a state-invariant 
prognostic biomarker with promise to optimize MDD treatments.
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3.1  INTRODUCTION

Frontal alpha asymmetry (FAA) is a proposed biomarker con-
ventionally acquired with electroencephalography (EEG). FAA 
has been studied for over three decades in major depressive 

disorder (MDD), anxiety, and other psychiatric diseases. Several stud-
ies stated, in a traditional framework of FAA, that it reflects the ap-
proach-withdrawal motivation system, i.e. the diathesis model (Da-
vidson, 1984; Harmon-Jones & Allen, 1997; Henriques & Davidson, 
1991; Kelley et al., 2017). Left-sided FAA (i.e. more right-sided frontal 
cortical activation than left-sided) was correlated more to withdrawal 
behavior than to approach, which was in turn associated with a vul-
nerability to developing MDD. However, our meta-analysis showed 
that FAA cannot be used as a generic diagnostic biomarker in MDD 
and does not reliably differentiate MDD from non-MDD patients 
(Van der Vinne et al., 2017), providing evidence against the diathesis 
model. Only a small subgroup of severely depressed females over 53 
years of age showed more right-sided alpha activity and severely de-
pressed males over 53 years of age more left-sided alpha than control 
peers. 

When regarding FAA as a prognostic rather than diagnostic biomark-
er, alpha asymmetry may be more promising. Bruder and colleagues 
(2008) found SSRIs (selective serotonin reuptake inhibitors) treat-
ment responders to have more right-sided alpha asymmetry while 
non-responders showed opposite asymmetry, primarily over the oc-
cipital region. This was confirmed in the large international Study 
for Predicting Optimized Treatment – Depression sample, where 
specifically female SSRI responders had more right-sided FAA, and 
non-responders the opposite (iSPOT-D, Arns et al., 2016). To further 
assess properties of FAA as a prognostic biomarker, knowledge on its 
reliability, stability, and sensitivity to other factors, such as medica-
tion or severity of depression, needs to be established.
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A predominant view in affective neuroscience is that FAA in de-
pressed patients consists of mostly trait-like features, not changing 
over time with state and independent of interventions, although 
some studies have suggested otherwise: both longitudinal and 
cross-sectional designs have been used to test FAA stability (see 
table 3.1 on page 50 for a summary, and supplement 3A for a table 
with detailed overview of studies). With an exception of Debener et 
al. (2000), most studies report FAA to be stable with minor or no 
changes between baseline and assessment later, both in patients and 
healthy controls (Allen et al., 2004; Bruder et al., 2008; Davidson et 
al., 2003; Deldin & Chiu, 2005; Gollan et al., 2014; Keune et al., 2011; 
Spronk et al., 2008; Sutton & Davidson, 1997; Tomarken et al., 1992). 

Cross-sectionally, several studies showed that FAA is independent of 
depression severity, both between patients (Allen et al., 2004; Arns 
et al., 2016; Feldmann et al., 2018; Gollan et al., 2014; Nusslock et al., 
2018; Van der Vinne et al., 2017; Vuga et al., 2006) and within patients, 
including remission (Carvalho et al., 2011). This contrasts the findings 
by Grünewald et al. (2018) and Keune et al. (2011), where a higher level 
of depression complaints correlated with more left-sided FAA (albeit 
only in the control group of Grünewald et al.). In other cross-section-
al studies on FAA stability between depressed patients and patients 
remitted from depression, no differences were found (Carvalho et al., 
2011; Feldmann et al., 2018; Gotlib et al., 1998). 

Despite some inconclusive results, the majority of findings indicate 
that FAA is predominantly a trait, only partially or not affected by 
changes in depressive state. Our meta-analysis on FAA as a diagnos-
tic marker of depression (Van der Vinne et al., 2017) demonstrated 
that bias is strongly reduced from 300 cases onwards. Studies in-
vestigating FAA stability until now always studied smaller samples  
(n ≤ 85). This may explain part of the conflicting results on FAA in 
these studies.

This has motivated our current work that aims to replicate longi-
tudinal results on the temporal stability of FAA by using data from 
the iSPOT-D dataset (baseline n = 1008, week-8 n = 453). The pri-
mary hypothesis was that FAA is reliable, and remains stable over 
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time, with limited changes as a result of antidepressant treatment, 
time and state change. We therefore assessed FAA after eight weeks 
of antidepressant drugs and consequential state changes in mood. 
As age, sex, and depression severity have had a significant influence 
on FAA-related outcomes in iSPOT-D and other studies (e.g. Arns et 
al., 2016; Bruder et al., 2001; Stewart et al., 2010; Van der Vinne et al., 
2017), we extended analyses by investigating possible mediation of 
FAA by these variables. We specifically studied MDD patients versus 
healthy controls differentiating subgroups identified in our previous 
meta-analysis, i.e. severely depressed patients over 53 years old (Van 
der Vinne et al., 2017). As in earlier iSPOT-D reports on FAA anxiety 
was not found to be of influence, we did not add this variable to our 
analyses.
For clinical use of FAA as a biomarker for treatment response, it is 
relevant to assess stability and robustness to medication. Stability is 
particularly an advantage when patients are already on an AD pre-
ceding baseline (that often have long half-life times requiring wash-
out periods of weeks) and FAA remains unaffected. We therefore 
also assess outcome prediction with FAA recorded after eight weeks 
treatment. In our previous report (Arns et al., 2016), at baseline, 
right-sided FAA in females was associated with favorable outcome 
to the SSRIs escitalopram and sertraline, whereas left-sided FAA was 
not. If FAA is prognostic for AD treatment outcome in specific sub-
samples, and FAA is indeed a stable trait, FAA after eight weeks on an 
AD should still be able to predict treatment outcome for females in 
agreement with our previous study (Arns et al., 2016). We hypothe-
sized that analysis of week-8 medicated EEG data would result in the 
same treatment prediction results as baseline unmedicated data did. 
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3.2  METHODS AND MATERIALS 
3.2.1  DESIGN 

This is an international multi-center, randomized, prospective 
open-label trial (Phase-IV clinical trial) in which MDD patients were 
randomized to escitalopram, sertraline, or venlafaxine-XR treatment 
in a 1:1:1 ratio. The study protocol details, including a power calcu-
lation, have been published by Williams et al. (2011). This design was 
deliberately chosen to mimic real-world practice with the aim of op-
timizing the translatability to real world settings.

3.2.2  MDD PATIENTS AND TREATMENT 

We included 1008 MDD patients, recruited between October 2008 
and January 2011. A detailed description of the study assessments, 
inclusion/exclusion criteria, diagnostic procedures and treatment is 
available in Williams et al. (2011). In summary, the primary diagnosis 
of nonpsychotic MDD was confirmed before randomization using 
the Mini-International Neuropsychiatric Interview (MINI-Plus, Shee-
han et al., 1998), according to DSM-IV criteria, and a score ≥16 on the 
17-item Hamilton Rating Scale for Depression (HRSD17). Additional 
measuring of depression complaints was done with the Very Quick 
Inventory of Depressive Symptomatology – Self Report (VQIDS-SR5, 
De La Garza et al., 2017). Comorbid anxiety disorders were allowed 
(present in 6.2% [specific phobia] to 10.5% [social phobia] of patients). 
All patients were either medication-naive or, if previously prescribed 
an antidepressant medication, had undergone a washout period of 
at least five half-lives before the baseline visit clinical and EEG as-
sessments. After the baseline visit, patients were randomized to one 
of three antidepressant medication treatments. After eight weeks of 
treatment, patients were tested again using the HRSD17, the VQIDS-
SR5 and an EEG assessment (figure 3.1, page 52). This study was ap-
proved by the institutional review boards at all of the participating 
sites and this trial was registered with ClinicalTrials.gov. Registra-
tion number: NCT00693849; URL: http://clinicaltrials.gov/ct2/show/
NCT00693849. 
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Figure 3.1: Consort flow diagram of the iSPOT-D study. Abbreviations: ADHD, attention 
deficit hyperactivity disorder; AD, antidepressant treatment; HRSD17, 17-item Hamilton 
rating scale for depression; MDD, major depressive disorder; PTSD, post-traumatic stress 
disorder; XR, extended release.

n = 5,378 excluded for:
Practical reasons (n = 1,086): Travel or scheduling 
difficulties, cost of medications, or staff discretion
Not meeting eligibility criteria (n = 3,078): Age 
n = 37, bipolar/manic episodes n = 690, psychosis 
n = 86, eating disorder n = 50, personality disorder 
n = 32, alcohol & drug dependence n = 171, 
suicidality n = 121, sub-clinical MDD n = 348, 
primary anxiety disorder n = 183, on treatment 
n = 443, previous contraindications to AD n = 206, 
medical n = 223, neurological n = 125, receiving 
therapy n = 42, ADHD treatment n = 37, Autism 
n = 1, pregnancy/breastfeeding n = 23, other 
n = 113, plus 147 missing specific reasons
Refused to participate (n = 844): Did not wish 
to take medication or time commitment.
No show (n = 370)

n = 307 excluded for:
Exclusion criteria (n = 295) :Comorbidity (bipolar, 
PTSD, drug use), suicidality, HRSD17<16
Refused to participate (n = 7)
Investigator’s discretion (n = 5)

Participants were recruited from physician 
referrals at participating sites or responded 
to advertisements (including individuals 
who had already presented to a physician 
plus those who had not).

Phone screen completed by site staff to 
assess eligibility (n = 6,693)

Baseline Visit - Assessed for eligibility 
(n = 1,315)

Enrolled and Randomized (n = 1,008)
INTENTION TO TREAT

Treatment Group 1
Allocation to 
escitalopram
(n = 336)

Treatment Group 2
Allocation to 
sertraline
(n = 336)

Treatment Group 3
Allocation to 
venlafaxine XR
(n = 336)

Assessed at week 8
(n = 236)
PER PROTOCOL 
(n = 136)

Assessed at week 8
(n = 251)
PER PROTOCOL 
(n = 169)

Assessed at week 8
(n = 235)
PER PROTOCOL 
(n = 148)

Dropped out
(n = 200)

Dropped out
(n = 167)

Dropped out
(n = 188)

RECRUITMENT

ENROLLMENT

ALLOCATION
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3.2.3  PRE-TREATMENT ASSESSMENTS 

EEG recordings were performed using a standardized methodology 
and platform (Brain Resource Ltd., Australia). Details of this proce-
dure (Arns et al., 2008; Williams et al., 2011) and of its reliability and 
across-site consistency have been published elsewhere (Paul et al., 
2007; Williams et al., 2005). In summary, subjects were seated in a 
sound and light attenuated room that was controlled at an ambient 
temperature of 22 °C. EEG data were acquired from 26 channels: Fp1, 
Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, 
CP4, T5, P3, Pz, P4, T6, O1, Oz and O2 (Quik-cap; NuAmps; 10-20 
electrode international system). EEG was assessed for two minutes 
with eyes open (EO) (with the subject asked to fixate on a red dot 
on the screen) and two minutes with eyes closed (EC). The subject 
was instructed to remain relaxed for the duration of the recording. 
The operator did not intervene when drowsiness patterns were ob-
served in the EEG. Data were referenced to averaged mastoids with a 
ground at AFz. Horizontal eye movements were recorded with elec-
trodes placed 1.5 cm lateral to the outer canthus of each eye. Vertical 
eye movements were recorded with electrodes placed 3 mm above 
the middle of the left eyebrow and 1.5 cm below the middle of the 
left bottom eyelid. Skin resistance was <5 K Ohms for all electrodes. 
The sampling rate of all channels was 500 Hz. A low pass filter with 
an attenuation of 40 dB per decade above 100 Hz was employed prior 
to digitization.

3.2.4  EEG ANALYSIS 

A detailed overview of the  data-analysis can be found in Arns et 
al. (2016). In summary, data were 1) filtered (0.3-100 Hz and notch); 
2) EOG-corrected using a regression-based technique similar to 
that used by Gratton, Coles, and Donchin (1983), segmented in 4 s 
epochs (50% overlapping), and an automatic de-artifacting method 
was applied. This EEG processing pipeline was also validated against 
an independent manual-processing pipeline (Arns et al., 2016). For 
further analysis, an average reference was applied, data were filtered 
(alpha power [µV2]: 8-13 Hz) and FAA was calculated between F3 and 
F4 as (F4 - F3) / (F4 + F3). 
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3.2.5  STATISTICS

Normal distribution was inspected, and appropriate transformations 
performed in case of non-normality. Non-log transformed alpha 
power was used to calculate FAA. Remission was defined as a score 
≤7 on the HRSD17 eight weeks after starting treatment (current end-
point), and response was defined as a ≥50% decrease in HRSD17 score 
from baseline to eight weeks. To control for antidepressant side-ef-
fects, we employed the VQIDS-SR5, developed specifically to focus on 
the core symptoms of depression. This enabled us to measure true 
depression severity, ruling out antidepressant side-effects such as 
physical complaints. We repeated ANOVAs from paragraphs 3.3.2 and 
3.3.3 and replaced all HRSD17 variables with VQIDS-SR5 equivalents. 
Results are reported in supplement 3D. 

Differences in age, sex, education, and depression severity at base-
line were tested using one-way ANOVA or non-parametric tests, de-
pending on its distribution. We only included patients who returned 
for their week-8 visit while on their assigned medication, having 
followed this treatment for a minimum of 6 weeks (‘per-protocol’ 
grouping, also see the CONSORT flow diagram in figure 3.1).

FAA reliability analysis was performed by calculating intraclass 
correlations (ICCs) across baseline and week-8 measurements. A 
full-factorial Repeated Measures ANOVA was conducted with the 
within–subject factor FAA Change Eyes Closed (FAA at baseline and 
after eight weeks) and between-subject factor Treatment arm (com-
paring drug effects of respectively escitalopram, sertraline, and ven-
lafaxine). Given the large sample size we set the significance level for 
main effects found for FAA Change in the main analyses at p ≤ .01, 
for interaction effects this remained at a conventional level of p ≤ 
.05. When significant interactions were found prompting subgroup 
analyses, again a level of p ≤ .05 was used. Effect sizes (ES) of main ef-
fects are reported in Cohen’s d. FAA stability was also tested through 
Pearson correlations between FAA Change and HRSD17 Change.

Post hoc, we repeated the Repeated Measures and Pearson correla-
tions analyses in the subgroups of moderately and severely depressed 
(HRSD17 score of ≥24) over the age of 53, separately for males and 
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females (conform our meta-analysis, Van der Vinne et al., 2017). How-
ever, as these groups might lead to underpowered tests, we also per-
formed a custom Repeated Measures ANCOVA on the whole dataset, 
now also including covariates Age and Depression severity, separately 
for males and females.

When a null hypothesis was not rejected by any of the ANOVAs or 
correlational analyses, we utilized Bayesian alternatives. This was 
done for testing evidence of absence of a change in FAA, using the 
Bayesian Repeated Measures ANOVA framework (based on work by 
Jeffreys (1961) and Rouder et al. (2009)). We analyzed the data with 
JASP (JASP Team, 2017). The first null hypotheses states that there 
is no difference in FAA between baseline and after eight weeks. The 
second that FAA Change is not correlated to HRSD17 Change. The 
two-sided alternative hypotheses state that FAA changed after eight 
weeks, or that FAA is correlated to HRSD17 Change.

Through a Repeated Measures model (Arns et al. 2016), we again pre-
dicted treatment outcome in females taking an SSRI (escitalopram or 
sertraline), while this time replacing baseline FAA with week-8 FAA 
(within subjects variable FAA Condition [EC and EO], and between 
subjects variable Response, and covariate Age). We tested effects one-
tailed (halved p-values were reported) because we specifically expect-
ed more right-sided FAA in SSRI responders than in non-responders, 
implying that a result in the unexpected direction would lead to the 
same conclusion as finding no differences at all (Ruxton & Neuhäus-
er, 2010). In supplement 3B, we explain why we compare the smaller 
sample containing only patients who were present for the assessment 
after eight weeks, to the larger sample with all baseline patients from 
the previous study.
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3.3  RESULTS
Of the 1008 MDD patients enrolled, the final MDD sample for the 
FAA Change analyses consisted of 453 MDD patients. The remain-
ing 555 patients were left out of the study: they either never started 
treatment, had less than six weeks of medication, or had no week-8 
assessment (or it was of insu�cient quality) (see figure 3.1). Table 3.2 
shows demographic information and response and remission rates 
for included patients. There were no differences between the three 
treatment groups regarding age, sex, baseline MDD, anxiety severi-
ty, remission and response rates, or number of rejected EEG epochs. 
Approximately 5.3% of EEG epochs were rejected due to artifacts for 
the MDD group during EC.

3.3.2  FAA CHANGE OVER TIME 

ICCs for FAA with both continuous and dichotomous (leftward or 
rightward FAA) variables were 0.276 and 0.256, respectively. The Re-
peated Measures ANOVA revealed no evidence for change in FAA 
after AD treatment (F(1,450) = 1.421, p = .234), nor an interaction with 
Treatment Arm (F(2,450) = 0.690, p = .502). FAA Change was neither 
significantly correlated to the change score in HRSD17 (r = 0.039, p 
= .410), nor to the percentage change in HRSD17 (r = 0.047, p = .323). 

escitalopram 

136
71

52.5
38.27
21.45
8.62
8.01
3.26
51.5
66.2

sertraline 

169
96

56.8
38.72
21.74
9.25
8.34
3.35
46.7
66.9

venlafaxine-XR 

148
80

54.1
37.98
21.45
9.01
7.99
3.21
44.6
66.2

Total 

453
247

Mean
54.5
38.34
21.56
8.98
8.13
3.28
47.5
66.4

    

n

Females

% Female
Average age (years)
HRSD17 baseline
HRSD17 week-8
VQIDS-SR5 baseline
VQIDS-SR5 week-8
% Remission (HRSD17)
% Response (HRSD17)

Table 3.2   Demographic features and treatment outcomes for patients who completed
treatment
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Results of Bayesian Repeated Measures testing of invariant (constant) 
FAA revealed a Bayes factor indicating evidence for the null hypoth-
esis. The models with the factors FAA Change and Treatment Arm 
showed that the data occur >7.4 times more likely under the null hy-
pothesis, than under any alternative model with (a combination of) 
the factors. Bayesian Pearson correlations between FAA Change and 
the difference score HRSD17/the percentage difference of HRSD17 re-
veal moderate to strong results. The data are respectively 12.1 and 9.3 
times more likely to occur under the null hypothesis than under the 
model assuming a correlation between the variables. See supplement 
3F for an elaboration on results and JASP tables.

3.3.3  EXTENDED REPEATED MEASURES MODEL AND CORRELATIONS

Focusing on variables known to have an influence on FAA, specif-
ically in the subgroup we thought to be prone to changes in FAA 
(severely depressed females and males over 53 years old), we did not 
find significant changes, although subsample sizes were small (total 
n = 27). Furthermore, in these subgroups the FAA Change score was 
not significantly correlated to the change score in HRSD17 (see ta-
ble in supplement 3C for all statistics). Bayesian Repeated Measures 
ANOVAs for the two sex groups of severely depressed over the age 
of 53 reveal anecdotal (i.e. worth no more than a bare mention, a 
customary description for BFs ranging 1-3) to moderate results. Most 
models therefore provided no conclusive evidence for either the null 
or the alternative hypotheses, although some models indicated mod-
erate evidence of the data being more likely to occur under the null 
hypothesis. See supplement 3F for an elaboration on results and JASP 
tables.
Extending the Repeated Measures model from paragraph 3.3.2 
showed that - irrespective of sex - baseline severity and age are not 
significantly contributing to FAA Change. Bayesian Repeated Mea-
sures alternatives for the extended ANOVAs showed similar results 
to paragraph 3.3.2. For females, the data are ≥6.6 times more likely to 
occur under the null hypothesis, than under any alternative model 
with (a combination of) the factors, and ≥4.7 times more likely in 
case of males. See supplement 3F for an elaboration on results and 
JASP tables.
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3.3.4  TREATMENT PREDICTION USING MEDICATED WEEK-8 DATA IN FEMALES

Treatment outcome prediction with week-8 data, revealed a similar 
prediction pattern as baseline data reported in Arns et al. (2016): one-
tailed testing of the prediction of response in females taking an SSRI 
for depression (escitalopram or sertraline), treatment response effects 
remained significant with week-8 FAA on group level (F(1,150) = 3.725, 
p = .028). Furthermore, the response effect of FAA was again lacking 
after eight weeks in the venlafaxine group.  
The week-8 SSRI data in figure 3.2 visualize how responders were 
significantly more right-sided than non-responders (based on female 
FAA means reported in supplement table 3E). Figure 3.2 also shows 
how the response effect was similar to the baseline assessment. This 
was despite the confidence interval (CI) of FAA in figure 3.2 (SSRI 
non-responders) showing no significant difference from 0 when 
measured with EO after eight weeks. No interactions with age were 
observed. The equivalent of figure 3.2 data for males is available in 
supplement 3G.
Cohen’s d comparing FAA change scores of female SSRI responders 
and non-responders was .304. When using the direction of week-8 
FAA alone to prescribe an SSRI or SNRI would have improved the 
overall remission rate from 47% to 56-58% for an SSRI. 

FA
A (

µV
)

Responders Non-responders Responders Non-responders
SSRI Venlafaxine

EC - baseline EC - week 8 EO - baseline EO - week 8

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

Responders Non-responders
Venlafaxine
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3.4  DISCUSSION
We investigated the stability of FAA in MDD patients during anti-
depressant treatment. We hypothesized that FAA is a robust metric, 
insensitive to time, antidepressant drug treatment and state changes. 
FAA did not change significantly after eight weeks of escitalopram, 
sertraline, or venlafaxine treatment, despite a relatively low reliabil-
ity of the FAA measurements. Additional Bayesian testing revealed 
that a stable FAA is more likely than a change in FAA over time after 
antidepressant treatment. Furthermore, post-hoc tests with variables 
known to have influence on FAA (in earlier iSPOT-D studies), re-
vealed no differential temporal changes in FAA in depressed patients 
differing on age, sex, depression severity, or change in depression se-
verity. Focusing on core depression symptoms only (as measured by 
the VQIDS-SR5, see supplement 3D), we found similar results.

To further confirm FAA temporal stability, we hypothesized that 
predicting treatment outcome in females taking SSRIs would lead 
to similar outcome when using week-8 FAA instead of the previously 
studied baseline FAA (Arns et al., 2016). This re-analysis indeed con-
firmed an overall response in the SSRI group with right-sided FAA, 
and a non-response with left-sided FAA. Although the effect size was 
less pronounced with week-8 data, week-8 FAA yielded the same 
conclusions as the baseline measurements, with a Cohen’s d of .547 
in the previous analyses vs our current .304. Furthermore, we yield-
ed the same improvement in remission rates when week-8 FAA had 
been used for ‘prescribing’ medication: previous SSRI remission rates 
improved from 46% to 53-60% using baseline FAA, the current from 
47% to 56-58% using week-8 FAA. This extends the use of FAA as a 
prognostic biomarker, as response prediction was neither modified 
by moment of assessment, nor by AD treatment.

Figure 3.2: (facing page) Mean values of female frontal alpha asymmetry (FAA, eyes open 
and eyes closed [EO and EC]), for the SSRI and venlafaxine groups, split up for responders 
and non-responders. Error bars represent standard error of the mean. The means and error 
bars indicate that baseline and week-8 FAA were not significantly different in predict-
ing treatment outcome in females; SSRI responders showed right-sided, non-responders 
left-sided FAA. No differences were, yet again, observed for the venlafaxine group. The 
equivalent of this data for males is available in supplement 3G.
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The low reliability was unexpected, and implies that FAA following 
treatment was not as stable as in previous studies. In several studies, 
FAA was found to be relatively reliable and consistent, based on ICCs 
and Cronbach’s alpha (Allen et al., 2004; Debener et al., 2000; Keune 
et al., 2011; Sutton & Davidson, 1997; Towers & Allen, 2009). Especial-
ly Towers and Allen (2009) demonstrated FAA consistency, through 
several methods. An important difference is the use of a single FAA 
statistic per assessment time (two in total) in our study vs several 
other studies using (fictive) multiple time points. This could account 
for our lower reliability. Despite the low ICC, we did replicate no 
evidence for a significant change in FAA over time, in a large sample 
(n = 453).

To our knowledge, this is the first study to assess the temporal sta-
bility of FAA in a large sample. This supports previous studies show-
ing that FAA mainly depends on a considerable number of trait-like 
features, insensitive to antidepressant treatment, age, sex or depres-
sion severity (Allen et al., 2004; Arns et al., 2016; Bruder et al., 2008; 
Carvalho et al., 2011; Deldin & Chiu, 2005; Feldmann et al., 2018; Gol-
lan et al., 2014; Keune et al., 2011; Nusslock et al., 2018; Spronk et al., 
2008; Sutton & Davidson, 1997; Tomarken et al., 1992; Van der Vinne 
et al., 2017; Vuga et al., 2006). Similarly, Segrave and colleagues (2011) 
showed no evidence for antidepressant elicited changes in FAA when 
comparing a small group of depressed patients on ADs with unmed-
icated patients. In other small cohorts, FAA was not modified by the 
use of antidepressive medication either (Bruder et al., 2008; Vuga et 
al., 2006), in agreement with our observations.

In the prevailing approach-withdrawal motivation system hypothe-
sis, it is assumed that FAA is associated with lifetime MDD (having 
had at least one depressive episode in one’s life), and not specifically 
current MDD. This is an important distinction, and our results ini-
tially support this theory. The motivation system hypothesis states 
that FAA is not expected to change as a result of changes in MDD 
status, and ultimately not with MDD remission. However, with es-
tablishing FAA (in)stability, our study would neither provide evidence 
for, nor against the theory. That is, if we would have found the oppo-
site result (a change in FAA), this could have been explained as well, 
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by the related capability model (Coan, Allen, & McKnight, 2006). 
This model states that resting state FAA is more prone to fluctua-
tions than FAA measured after inducing positive or negative mood. 
Because we measured resting state FAA, either outcome could be 
explained within the approach-withdrawal motivation system, giv-
en the capability model. Therefore, it is di�cult to unambiguously 
place our results in the existing theories. Note that our earlier find-
ings were less compatible with the motivation system: Firstly, in the 
approach-withdrawal motivation system, left-sided FAA is theorized 
to be more associated with withdrawal behavior and depression. But 
brain asymmetry was found not to be different in these groups as 
measured both through EEG FAA (Van der Vinne et al., 2017), and 
through fMRI in a recent large ENIGMA consortium study (de Kovel 
et al., 2019). Secondly, prognostic results for females in the FAA iS-
POT-D study (Arns et al., 2016) revealed heterogeneity in MDD pa-
tients, not consistent with assuming a homogenic FAA related vul-
nerability for MDD. In sum, the current study was not designed to 
directly investigate the approach-withdrawal motivation theory, and 
cannot provide support in favor of or against the theory.

We show that FAA is a robust metric, suitable for sex specific treat-
ment prediction under challenging circumstances, such as state, 
time, the use of common antidepressive agents and drug changes. 
This suggests reliable implementation in clinical practice as a prog-
nostic biomarker in both medicated and unmedicated patients.

CONCLUSIONS
In an adequately powered sample, we demonstrate that 1) neither 
antidepressant medication, 2) nor MDD state and severity, have sys-
tematic effects on FAA. This confirms FAA stability. Furthermore, 
as prognosis of treatment response is irrespective of the moment 
of measurement, FAA may serve as a robust biomarker to optimize 
MDD treatments. 
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3.5.2  SUPPLEMENT 3B: COMPARISON BASELINE AND WEEK-8 DATA

To justify the use of a follow-up sample that is supposed to contain 
the same MDD patients as the baseline data (paragraph 3.3.4), but 
does not due to incomplete assessments, we performed the baseline 
analysis from Arns et al. (2016) on only those who did have a com-
plete week-8 assessment. The effect within the SSRI group was the 
same (p = .001, F(1,150) = 10.619, see table S3.2 for all statistics).

3.5.3  SUPPLEMENT 3C 

Original
analysis

Original analysis without 
patients with no follow-up

Re-analysis with
week-8 FAA1

Table S3.2  P-values of mentioned interaction effects in the re-analysis of Arns et al. 
(2016) with data only of MDD patients who had measurements after eight weeks (thus 
excluding FAA baseline measurements of patients who did not return for follow-up)

1Halved p-values due to one-tailed analysis

p = .001
p = .070

p = .001
p = .011

p = .028
p = .411

Females SSRI: Response
Females venlafaxine: Response

F(df) p(F) r

Table S3.3  Statistics paragraph 3.3.3  

2.080 (1,14)
2.425 (2,14)
0.092 (1,7)
0.061 (2,7)

0.355 (1,235)
0.714 (2,235)
0.889 (1,235)
0.645 (1,235)
0.849 (2,235)
0.846 (2,235)
1.254 (1,235)
1.148 (2,235)
0.029 (1,194)
0.282 (2,194)
0.024 (1,194)
0.022 (1,194)
0.292 (2,194)
0.471 (2,194)
0.052 (1,194)
0.352 (2,194)

FAA Change
FAA Change * Treatment arm
FAA Change
FAA Change * Treatment arm
FAA Change * HRSD17 Change
FAA Change * HRSD17 Change
FAA Change
FAA Change * Treatment arm
FAA Change * Age
FAA Change * Depression severity
FAA Change * Treatment arm * Age
FAA Change * Treatment arm * Depression severity
FAA Change * Age * Depression severity
FAA Change * Treatment arm * Age * Depression severity
FAA Change
FAA Change * Treatment arm
FAA Change * Age
FAA Change * Depression severity
FAA Change * Treatment arm * Age
FAA Change * Treatment arm * Depression severity
FAA Change * Age * Depression severity
FAA Change * Treatment arm * Age * Depression severity

.171

.125

.771

.941

.552

.491

.344

.423

.429

.430

.264

.319

.864

.755

.878

.881

.747

.625

.820

.704

0.259
-0.070

p(r)

.316

.849

A1

B1

Females

Males

Females
Males
Females

Males

1A: Severely depressed ≥53 years old only. B: Whole dataset.
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3.5.4  SUPPLEMENT 3D: VQIDS-SR5

To control for AD side effects, we repeated analyses from paragraphs 
3.3.2 and 3.3.3 and replaced all HRSD17 variables with VQIDS-SR5 equiv-
alents. Correlational analyses showed that FAA Change was neither 
significantly correlated to the change score in VQIDS-SR5 (r = 0.059, 
p = .225), nor to the percentage change in VQIDS-SR5 (r = 0.060,  
p = .219).
Focusing on variables known to have an influence on FAA, specifically 
in the subgroup we thought to be prone to changes in FAA (severely 
depressed females and males over 53 years old), we did not find the 
FAA Change score to be significantly correlated to the change score 
in VQIDS-SR5, although subsample sizes were small. Extending the 
Repeated Measures model from paragraph 3.3.2 showed that VQIDS-
SR5 baseline severity and age are not significantly contributing to FAA 
Change, both in males and females (see table S3.4 for all statistics).

F(df) p(F) r

Table S3.4  VQIDS-SR5 statistics for paragraphs 3.3.2 and 3.3.3  

0.530 (1,225)
0.002 (2,225)
0.930 (1,225)
0.125 (1,225)
0.066 (2,225)
0.145 (2,225)
0.384 (1,225)

0.351 (2,225)
0.991 (1,225)
1.491 (2,225)
0.407 (1,225)
1.214 (1,225)
0.773 (2,225)
1.739 (2,225)
0.654 (1,225)

1.158 (2,225)

FAA Change * VQIDS Change
FAA Change * VQIDS Change
FAA Change
FAA Change * Treatment arm
FAA Change * Age
FAA Change * VQIDS Depression severity
FAA Change * Treatment arm * Age
FAA Change * Treatment arm * VQIDS Depression severity
FAA Change * Age * VQIDS Depression severity
FAA Change * Treatment arm * Age * VQIDS Depression 
severity
FAA Change
FAA Change * Treatment arm
FAA Change * Age
FAA Change * VQIDS Depression severity
FAA Change * Treatment arm * Age
FAA Change * Treatment arm * VQIDS Depression severity
FAA Change * Age * VQIDS Depression severity
FAA Change * Treatment arm * Age * VQIDS Depression 
severity

.467

.998

.336

.724

.936

.865

.536

.705

.321

.228

.524

.272

.463

.179

.420

.316

-0.121
0.127

p(r)
.644
.381

A1

B1

Females
Males
Females

Males

1A: Severely depressed ≥53 years old only. B: Whole dataset.
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3.5.5  SUPPLEMENT 3E

3.5.6  SUPPLEMENT 3F: BAYESIAN REPEATED MEASURES ANOVA AND  

CORRELATIONS 

F1  ELABORATED BAYESIAN ANALYSES PARAGRAPH 3.3.2

Results of Bayesian testing of an absence of change in FAA, revealed 
a Bayes factor indicating evidence for the null hypothesis: the models 
with the factors FAA Change and Treatment Arm showed that the 
data occur >7.4 times more likely under the null hypothesis, than un-
der any alternative model with (a combination of) the factors. This 
means that moderate evidence for the null hypothesis was found 
with only FAA Change in the model (BF01 = 7.483), increasing to (very) 
strong evidence when adding a combination of the two main effects 
(BF01 = 240.356) and including their interaction effect (BF01 = 5,109.119). 
The error percentage was <2.5%, which indicates su�cient stability 
of the numerical algorithm that was used to obtain the result. For 
each factor, the BFinclusion reflects how well the factor predicts the data 
by comparing the performance of all models that include the factor 
to the performance of all the models that do not include the factor. 
For both the factors FAA Change and Treatment Arm, there is weak 
evidence in favor of their inclusion (BFinclusion = 0.134 and 0.031 respec-
tively), as well as a weak evidence in favor of the inclusion of the in-
teraction effect (BFinclusion = 0.047). This implies that these factors are 
not providing evidence for change in FAA. See table S3.6.1 on page 68 
for all results.

Baseline
Sex Response Non-

response
Response Non-

response
Medication
type

EEG
condition1

Week-8

Table S3.5  FAA means of the different subgroups reported in paragraph 3.3.4. Split on 
sex, medication type, EEG condition, response group, and time of assessment 

Female

Male

SSRI

SNRI

SSRI

SNRI

EC
EO
EC
EO
EC
EO
EC
EO

0.019
0.009
0.000

-0.013
0.003
0.015

-0.015
-0.010

-0.048
-0.036
0.028
0.025
0.017
0.036

-0.028
-0.045

0.009
0.033
0.010
0.020
0.013
0.044

-0.031
-0.036

-0.022
-0.008
-0.004
0.018
0.030
0.036

-0.023
0.002

1EC = eyes closed, EO = eyes open
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Bayesian Pearson correlations between FAA Change and the differ-
ence score HRSD17/the percentage difference HRSD17 reveal moderate 
to strong results, where the data are respectively 12.1 and 9.3 times 
more likely to occur under the null hypothesis than under the model 
assuming there is a correlation between the variables. See table S3.6.2 
for all results.

F2  ELABORATED BAYESIAN ANALYSES PARAGRAPH 3.3.3

Bayesian Repeated Measures ANOVAs for the two sex groups of se-
verely depressed over the age of 53 reveal anecdotal (i.e. worth no 
more than a bare mention, a customary description for BFs rang-
ing 1-3) to moderate results. Males: BF01 = 1.351-2.715 for models with 
only main effects, BF01 = 6.195 for the model with the interaction;  
BFinclusion = 0.438-0.748; error% = 0.701-2.327. Females: BF01 = 1.864-
2.944 for most models, BF01 = 4.304 for the model with only main 
effects of FAA Change and Treatment Arm; BFinclusion = 0.434-1.462; 
error% = 0.922-1.372. Most models therefore provided no conclusive 

Model comparison
Models

Table S3.6.1  Bayesian Repeated Measures ANOVA main analysis 

Null model (incl. subject)
FAA Change
Treatment
FAA Change + Treatment
FAA Change + Treatment + FAA Change * Treatment

P(M)
.200
.200
.200
.200
.200

P(M|data)
.856
.114
.026
.004
1.675e-4

BFM

23.749
0.517
0.107
0.014
6.702e-4

BF01

1.000
7.483
32.853
240.356
5109.119

error %

1.276
0.604
2.282
2.471

Note: All models include subject

Analyses of effects
Effects

Table S3.6.1  continued 

FAA Change
Treatment
FAA Change * Treatment

P(incl)
.400
.400
.200

P(incl|data)
.118
.030
1.675e-4

BFInclusion

0.134
0.031
0.047

Note: Compares models that contain the effect to equivalent models stripped of the 
effect. Higher-order interactions are excluded.

Table S3.6.2  Bayesian Pearson correlations 
FAA Change vs HRSD 17 Change/HRSD17 % Change

FAA Change
FAA Change

vs
vs

HRSD17 Change
HRSD17 % Change

r
0.039
0.052

BF01

12.111
9.275
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evidence for either the null or the alternative hypotheses, and BFin-
clusions indicate that there is (very) weak evidence in favor of includ-
ing the factors. However, some models indicated moderate evidence 
of the data being more likely to occur under the null hypothesis. See 
tables S3.6.3 and S3.6.4 for all results.

Model comparison
Models

Table S3.6.3  Bayesian Repeated Measures ANOVA for severely depressed 
males ≥53 years old 

Null model (incl. subject)
FAA Change
Treatment
FAA Change + Treatment
FAA Change + Treatment + Time * Treatment

P(M)
.200
.200
.200
.200
.200

P(M|data)
.363
.175
.269
.134
.059

BFM

2.282
0.851
1.472
0.618
0.249

BF01

1.000
2.070
1.351
2.715
6.195

error %

0.701
0.687
1.744
2.327

Note: All models include subject

Analyses of effects
Effects

Table S3.6.3  continued 

FAA Change
Treatment
FAA Change * Treatment

P(incl)
.400
.400
.200

P(incl|data)
.309
.403
.059

BFInclusion

0.489
0.748
0.438

Note: Compares models that contain the effect to equivalent models stripped of the 
effect. Higher-order interactions are excluded.

Model comparison
Models

Table S3.6.4  Bayesian Repeated Measures ANOVA for severely depressed 
females ≥53 years old 

Null model (incl. subject)
FAA Change
Treatment
FAA Change + Treatment
FAA Change + Treatment + FAA Change * Treatment

P(M)
.200
.200
.200
.200
.200

P(M|data)
.393
.211
.171
.091
.134

BFM

2.592
1.069
0.825
0.402
0.617

BF01

1.000
1.864
2.299
4.304
2.944

error %

1.400
0.528
0.922
1.372

Note: All models include subject

Analyses of effects
Effects

Table S3.6.4  continued 

FAA Change
Treatment
FAA Change * Treatment

P(incl)
.400
.400
.200

P(incl|data)
.302
.262
.134

BFInclusion

0.536
0.434
1.462

Note: Compares models that contain the effect to equivalent models stripped of the 
effect. Higher-order interactions are excluded.
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Bayesian Repeated Measures alternatives for the extended ANOVAs 
showed similar results to paragraph 3.3.3: for females, the data are 
≥6.6 times more likely to occur under the null hypothesis than under 
the alternative hypothesis (only models including factor FAA Change: 
BFinclusion FAA Change and FAA Change X Treatment Arm 0.152 and 
0.102, error% ≤ 8.576), and ≥4.7 times more likely in case of males 
(only models including factor FAA Change: BFinclusion Time and Time 
X Treatment Arm 0.132 and 0.151, error% ≤ 5.582). See tables S3.6.5 and 
S3.6.6 for all results.

Model comparison
Models

Table S3.6.5  Bayesian Repeated Measures ANOVA for females, with factors and 
covariates Treatment Arm, Age and Baseline HRSD17

Null model (incl. subject)
FAA Change
Age
FAA Change + Age
Baseline HRSD17 
FAA Change + Baseline HRSD17

Age + Baseline HRSD17

FAA Change + Age + Baseline HRSD17

Treatment
FAA Change + Treatment
Age + Treatment
FAA Change + Age + Treatment
Baseline HRSD17 + Treatment
FAA Change + Baseline HRSD17 + Treatment
Age + Baseline HRSD17 + Treatment
FAA Change + Age + Baseline HRSD17 + Treatment
FAA Change + Treatment + FAA Change*Treatment
FAA Change + Age + Treatment + 
FAA Change * Treatment
FAA Change + Baseline HRSD17 + Treatment + 
FAA Change * Treatment
FAA Change + Age + Baseline HRSD17 + 
Treatment + FAA Change * Treatment

P(M)
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050

.050

.050

.050

P(M|data)
.547
.083
.092
.014
.097
.015
.027
.004
.073
.011
.013
.002
.013
.002
.004
5.979e-4
.001

1.915e-4

2.204e-4

5.817e-5

BFM

22.983
1.720
1.935
0.268
2.036
0.286
0.534
0.077
1.490
0.216
0.243
0.039
0.255
0.040
0.076
0.011
0.022

0.004

0.004

0.001

BF01

1.000
6.596
5.922

39.377
5.657

36.858
20.007

134.758
7.526

48.653
43.438

268.859
41.259

263.804
137.616
915.659
472.071

2858.225

2483.772

9410.129

error %

1.069
1.199
1.598
1.928
1.939
1.962
2.073
0.651
1.854
1.488
4.110
1.331
1.689
3.325
1.734
5.124

2.712

8.576

2.373
Note: All models include subject

Analyses of effects
Effects

Table S3.6.5 continued 

FAA Change
Age
Baseline HRSD17 

Treatment
FAA Change *Treatment

P(incl)
.400
.500
.500
.400
.200

P(incl|data)
.132
.157
.163
.119
.002

BFInclusion

0.152
0.187
0.195
0.135
0.102

Note: Compares models that contain the effect to equivalent models stripped of the 
effect. Higher-order interactions are excluded.
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Model comparison
Models

Table S3.6.6  Bayesian Repeated Measures ANOVA for males, with factors and 
covariates Treatment Arm, Age and Baseline HRSD17

Null model (incl. subject)
FAA Change
Treatment
FAA Change + Treatment
FAA Change + Treatment + FAA Change * Treatment
Age
FAA Change + Age
Treatment + Age
FAA Change + Treatment + Age
FAA Change + Treatment + Age + 
FAA Change * Treatment
Baseline HRSD17 

FAA Change + Baseline HRSD17

Treatment + Baseline HRSD17

FAA Change + Treatment + Baseline HRSD17

FAA Change + Treatment + Baseline HRSD17 + 
FAA Change*Treatment
Age + Baseline HRSD17

FAA Change + Age + Baseline HRSD17

Treatment + Age + Baseline HRSD17

FAA Change + Treatment + Age + Baseline HRSD17

FAA Change + Treatment + Age + Baseline HRSD17 + 
FAA Change*Treatment

P(M)
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050

.050

.050

.050

.050

.050

.050

.050

.050

.050

.050

P(M|data)
.189
.025
.303
.040
.006
.047
.006
.060
.008
.001

.081

.010

.130

.018

.003

.028

.004

.037

.005

7.334e-4

BFM

4.416
0.492
8.262
0.787
0.118
0.929
0.111
1.203
0.152
0.022

1.684
0.201
2.832
0.339
0.049

0.547
0.070
0.728
0.097

0.014

BF01

1.000
7.471
0.622
4.740

30.614
4.045

32.350
3.166

23.809
162.929

2.316
18.048

1.454
10.743
73.444

6.740
51.141

5.113
37.061

257.148

error %

3.978
0.600
1.459
2.419
1.842
1.464
1.480
2.818
2.264

2.516
1.736
1.023
2.659
2.043

1.240
2.066
1.253
5.852

2.230
Note: All models include subject

Analyses of effects
Effects

Table S3.6.6 continued 

FAA Change
Age
Baseline HRSD17 

Treatment
FAA Change *Treatment

P(incl)
.400
.400
.500
.500
.200

P(incl|data)
.116
.600
.195
.316
.011

BFInclusion

0.132
1.538
0.243
0.462
0.151

Note: Compares models that contain the effect to equivalent models stripped of the 
effect. Higher-order interactions are excluded.
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3.5.7  SUPPLEMENT 3G: MALE DATA EQUIVALENT TO FIGURE 3.2 WITH  

FEMALE DATA

Figure S3.1: Mean values of male frontal alpha asymmetry (FAA, eyes open and eyes closed 
[EO and EC]), for the SSRI and venlafaxine groups, split up for responders and non-re-
sponders.

FA
A (

µV
)

Responders Non-responders Responders Non-responders
SSRI Venlafaxine

EC - baseline EC - week 8 EO - baseline EO - week 8

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08
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ABSTRACT

Introduction
MDD patients with abnormal EEG patterns seem more likely to be 
non-responsive to the antidepressants escitalopram and venlafaxine, 
but not sertraline, than patients without EEG abnormalities. This finding 
suggests that patients with both MDD and abnormal EEGs may differ-
entially respond to antidepressant treatment. In the current study, we 
investigated whether depressed patients with an abnormal EEG show 
a normalization of the EEG related to antidepressant treatment and 
response and whether such effect is drug specific, and whether having 
had early life stress (ELS) increases the chance of abnormal activity.

Methods and materials
Baseline and week 8 EEGs and depression symptoms were extracted 
from a large multicenter study (iSPOT-D, n = 1008) where depressed 
patients were randomized to escitalopram, sertraline, or venlafaxine-XR 
treatment. We calculated odds ratios of EEG normalization and depres-
sion response in patients with an abnormal EEG at baseline, comparing 
sertraline versus other antidepressants. 

Results
Fifty-seven patients with abnormal EEGs were included. EEGs did not 
normalize significantly more with sertraline compared to other anti-
depressants (OR = 1.9, p = .280). However, patients with a normalized 
EEG taking sertraline were 5.2 times more likely to respond than sub-
jects taking other antidepressants (p = .019). ELS was not significantly 
related to abnormal activity.

Limitations
Neurophysiological recordings were limited in time (two times 2 min 
EEGs) and statistical power (n = 57 abnormal EEGs).

Conclusions
Response rates in patients with normalized EEG taking sertraline were 
significantly larger than in subjects treated with escitalopram/venlafax-
ine. This adds to personalized medicine and suggests a possible drug 
repurposing for sertraline.
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4.1  INTRODUCTION

Abnormal activity in the electroencephalogram (EEG) in ab-
sence of clinical events (such as seizures) includes parox-
ysmal activity (e.g. isolated epileptiform discharges (IEDs), 

intermittent focal slowing) or diffuse slowing of the background pat-
tern. Abnormal EEG activity is not exclusively associated with disor-
ders such as epilepsy and may occur without obvious clinical signs or 
symptoms. However, it has been hypothesized that particular EEG 
abnormalities are associated with multiple mental disorders (Boutros 
2018; Inui et al., 1998; Shelley & Trimble, 2009; Yasuhara 2010), opt-
ing the possibility that patients with an abnormal EEG may benefit 
from medication targeting both the mental disorder and the EEG 
abnormalities. Assessing pre-treatment EEG abnormalities therefore, 
could both benefit prognosis reliability and treatment outcome and 
would adhere to the standards set by the NIMH with the Research 
Domain Criteria framework ([RDoC] Insel et al., 2010, under Arousal 
(Physiology)).

EEG abnormalities are reported in 3–5% of patients with MDD, sim-
ilar to controls (1–6%: Arns et al., 2017; Arns et al., 2008; Goodwin, 
1947; Lennox-Buchtal et al., 1960; Monin et al., 2018; Oh et al., 2018; 
Richter et al., 1971; Shelley et al., 2008). Furthermore, an increased 
likelihood of developing epilepsy exists in MDD (Kanner et al., 2017b). 
Vice-versa, the most commonly reported psychiatric comorbidity in 
epilepsy is MDD (Bragatti et al., 2014), as 24% of epileptic patients are 
affected by MDD (Kanner, 2017a).

Ribot, Ouyang, and Kanner (2017) found a decrease in seizure fre-
quency as a result of antidepressant treatment in depressed humans 
with co-morbid epilepsy. This was irrespective of how well their 
mood symptoms improved. In animal models, antidepressants (AD) 
showed a similar decrease in seizure frequency (Kamal, 2007).
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Only few studies explored how abnormal EEGs, in the absence of 
epilepsy, relate to the treatment effects in affective disorders. Arns 
et al. (2017) showed that a subgroup of MDD patients with abnormal 
EEG patterns was more likely to be non-responsive to the ADs es-
citalopram and venlafaxine, whereas response to sertraline was not 
different for patients with or without EEG abnormalities. These find-
ings suggest that patients with both MDD and abnormal EEGs may 
differentially respond to AD treatment.

In this light, sertraline might exert some anticonvulsant effects, given 
the observation that people with abnormal EEGs did respond well to 
sertraline. This would justify the consideration of repurposing the 
AD sertraline as a mild anticonvulsant for the treatment of MDD 
with paroxysmal activity. To explore such repurposing, we studied if 
sertraline treatment results in more EEG normalization after eight 
weeks of treatment, compared to venlafaxine and escitalopram, and 
if this is associated with clinical response. Sertraline responders were 
expected to show more normalization than responders to other ADs. 
This was complemented by evaluating if early life stress (ELS, a po-
tential cause of an abnormal EEG) is associated with abnormal EEG 
patterns. For background and results, see supplement 4.5. Our study 
was not originally designed to detect EEG abnormalities (particularly 
IEDs) and recordings were limited to 2 min of eyes-open and 2 min of 
eyes-closed EEG. This is su�cient for detecting slow wave abnormal-
ities (Struve & Boutros, 2005). However, short recordings increase the 
chances for a false negative recording for IEDs. Despite these limita-
tions, we sought to capitalize on this large sample size of well-char-
acterized patients with MDD to investigate whether normalization 
after AD treatment occurs in EEGs initially showing abnormalities.
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4.2  METHODS AND MATERIALS
4.2.1  DESIGN

This study was an international multicenter, randomized, prospec-
tive open-label trial (phase IV clinical trial, international Study for 
Predicting Optimized Treatment in Depression [iSPOT-D]) in which 
MDD subjects were randomized to escitalopram, sertraline, or ven-
lafaxine-XR treatment in a 1:1:1 ratio. The study protocol details have 
been published by Saveanu et al. (2015) and Williams et al. (2011).

The iSPOT-D sample consisted of 1008 patients with MDD and 336 
healthy controls, the current study focused on 58 subjects having an 
abnormal EEG (identical to the sample from our previous report, 
Arns et al., 2017). After excluding data from one subject due to poor 
EEG quality at endpoint, the sample for our main analyses consist-
ed of 57 patients with MDD displaying an abnormal EEG at base-
line measurement. A complete description of the study assessments, 
inclusion/exclusion criteria, diagnostic procedures, treatment and 
characterization of this paroxysmal subgroup is available in Arns et 
al. (2017). In summary, the primary diagnosis of nonpsychotic MDD 
was confirmed at the baseline visit (before randomization) using the 
Mini-International Neuropsychiatric Interview (MINI-Plus), accord-
ing to the Diagnostic and Statistical Manual of Mental Disorders, 
fourth edition (DSM-IV) criteria, and a score ≥16 on the clinician-rat-
ed 17-item Hamilton Rating Scale for Depression (HRSD). To mea-
sure the neurophysiological consequences of childhood trauma (as 
was reported in Williams et al., 2016), we used the Early-Life Stress 
Questionnaire (ELSQ, McFarlane et al., 2005). The ELSQ comprises 
18 items, which assess exposure to specific traumatic events in the 
first 17 years of life (see supplement 4.6 for the entire questionnaire) 
and which are equivalent to the trauma items assessed by the Child 
Abuse and Trauma Scale (Chu et al., 2013; Williams et al., 2016). Each 
item is scored dichotomously for the presence/absence of expo-
sure to each type of trauma. As reported by Williams et al. (2016), in 
the complete iSPOT-D sample the extent of exposure to traumatic 
events was not found to differ across site or across country. All MDD 
subjects were either AD medication naive or, if previously prescribed 
an AD, had undergone a washout period of at least 5 half-lives before 
the baseline visit clinical and EEG assessments. After the baseline 
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visit, MDD subjects were randomized to one of the three AD med-
ications. After eight weeks of treatment, subjects were tested again 
using the HRSD and EEG, further referred to as endpoint. Subjects 
provided written informed consent. This study was approved by the 
local institutional review boards at all the participating sites and was 
registered at ClinicalTrials.gov (NCT00693849).

4.2.2  PRE AND POST-TREATMENT ASSESSMENTS

EEG recordings were performed at baseline and at endpoint, using a 
standardized methodology and platform (Brain Resource Ltd, Aus-
tralia). Details of this procedure have been published elsewhere (Wil-
liams et al., 2011), and details of the reliability and across-site consis-
tency of this EEG procedure have also been published (Paul et al., 
2007; Williams et al., 2005). In summary, subjects were seated in a 
sound and light attenuated room that was controlled at an ambient 
temperature of 22 °C. EEG data were acquired from 26 channels: Fp1, 
Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, 
CP4, T5, P3, Pz, P4, T6, O1, Oz, and O2 (NuAmps; 10–20 electrode 
international system). EEG data were collected for 2 min with eyes 
open (EO) and 2 min with eyes closed (EC). Data were referenced to 
averaged mastoids with a ground at AFz. Horizontal eye movements 
were recorded with electrodes placed 1.5 cm lateral to the outer can-
thus of each eye. Vertical eye movements were recorded with elec-
trodes placed 3mm above the middle of the left eyebrow and 1.5 cm 
below the middle of the left bottom eyelid. Skin resistance was <5 
kOhm for all electrodes. A low-pass filter with an attenuation of 40 
dB per decade above 100 Hz was employed prior to digitization with 
a sampling rate of 500 Hz.

4.2.3  EEG ANALYSIS

A high-pass filter of 0.3 Hz, a low-pass filter of 100 Hz, and notch fil-
ters of 50 or 60 Hz (depending on the country in which the data were 
recorded) were applied. Data were EOG corrected using a regression 
based technique similar to the method described by Gratton, Coles, 
and Donchin (1983). No other artifact rejection was applied to the 
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data other than EOG correction and filtering. Data were visually in-
spected in Brain Vision Analyzer (Brainproducts, Germany) using a 
linked ears and queens-square montage. Visual inspection and clas-
sification were performed by author N.N.B. (a board-certified elec-
troencephalographer, neurologist, and psychiatrist), who was blinded 
to the subject’s status (patient vs control), clinical data, assessment 
moment (baseline vs endpoint) and treatment arm. Details on EEG 
data analysis and validation can be found elsewhere (Arns et al., 
2016). Eyes closed awake EEG data were examined for the presence 
of any focal or generalized slowing (EEG slowing). Diffuse slowing 
was recorded if the background frequency was consistently below 
the alpha range (Niedermeyer, 2005). Focal slowing was recorded if 
rhythms slower than alpha (theta or delta, i.e. <8 Hz) were consis-
tently detected in a particular location (Krauss et al., 2010). Epilepti-
form or paroxysmal activity were defined as any EEG pattern (with or 
without a sharp contour) that emerges and disappears paroxysmally 
from the ongoing background activity (Niedermeyer, 2005). Non-par-
oxysmal, focal or generalized, slow wave activity were more or less 
continuously recorded (note that records were almost entirely fully 
awake records) with some waxing and waning (Sharbrough, 2005). 
Finally, the presence of any of the so-called controversial waveforms 
(e.g., wicket spikes) was also recorded. These waveforms are paroxys-
mal but are of uncertain significance (Boutros, 2014). Supplement 4.7 
contains descriptive and visual information of abnormalities on the 
individual level. Classification of all abnormalities was in accordance 
to the guidelines published by the International Federation of Clini-
cal Neurophysiology (Noachtar et al., 1999).

4.2.4  STATISTICS

Our primary outcome measure was normalization of the EEG, de-
fined as an absence of abnormalities after eight weeks of AD treat-
ment, for those subjects who were classified as having an abnormal 
baseline EEG. Treatment response was defined as a more than 50 
percent decrease in HRSD score from baseline to endpoint, identical 
to our previous study. Secondary, we focused on treatment response 
in patients with a normalized EEG. Differences in age, sex, and de-
pression severity at baseline were tested using one-way analysis of 
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variance (or nonparametric tests if required). Although pharmacolog-
ically different presumed mechanisms of action, we chose to merge 
escitalopram and venlafaxine groups based on the prior finding that 
these two drugs show poor clinical response in patients with an ab-
normal EEG (as opposed to the sertraline group), thereby also equal-
izing statistical power. For the presence of abnormalities at endpoint, 
significance level was set at p ≤ .05 and effect sizes of main effects 
were reported in odds ratios (OR) with 95% confidence intervals (CI). 
For assessing the relationship between ELS and EEG abnormalities, 
both ELS in general and abuse in particular, were tested binary (OR 
with CI) and continuously (summing up all experiences ELS events, 
testing through logistic regression), for their neurophysiological ef-
fect (having an abnormal EEG at baseline or not). Every question-
naire item was also singularly tested binary through the calculation 
of ORs.

4.3  RESULTS
In the abnormal sample, 45% achieved remission (HRSD score below 
MDD cutoff at endpoint) and 54% reached response to treatment (see 
table 4.1). The number of subjects with an abnormal EEG was sig-
nificantly higher in the group prescribed with sertraline than other 
antidepressants, yielding unequal distributions for the number of re-
sponders among treatment groups. For the additional ELS analyses, 
the total sample of patients with complete EEG and ELS data (n = 
1152) consisted of 878 patients with MDD and 274 healthy controls.

Responders (31.6 ± 10.1 years) did not significantly differ in age (37.3 
± 13.2 years; p = .065; F(1,56) = 3.535) or sex (p = .541; χ2 = 0.374) from 
non-responders. As previously reported (Arns et al., 2017), response 
rates in this abnormal subgroup were highest in the sertraline group 
(72%), followed by the other AD group (38%). Based on this sample, 
escitalopram and venlafaxine were associated with nonresponse in 
MDD patients with EEG abnormalities, but not so for sertraline. See 
table 4.1 for an overview of response rates.
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Drug effect on abnormal EEGs. Out of 57 subjects with an abnormal 
EEG at baseline, 39 showed no more EEG abnormalities at endpoint 
(76% after sertraline, 62.5% after another AD). Results are shown in 
table 4.1. Comparing sertraline to the other ADs, OR analyses showed 
no significant differences in normalization of the EEG at endpoint 
(OR = 1.9, p = .280, 95% CI [0.593,6.084]).

Mediation of EEG normalization on clinical response to different drugs. 
Responders and non-responders were equally likely to have a normal 
EEG at endpoint (table 4.2). However, when specifically comparing 
sertraline to other ADs among subjects with a normalized EEG, sub-
jects taking sertraline were 5.2 times more likely to be a responder 
than subjects taking other ADs (p = .019, 95% CI [1.317,20.539], see 
figure 4.1). For subjects with an unchanged EEG this difference was 
not significant (OR = 2.8, p = .325, 95% CI [0.361,21.727]). 
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28%
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59%
67%

47%

 
Non-responders

Response EEG at endpoint     

Sertraline
Other AD
Venlafaxine
Escitalopram

Total

Table 4.1   Response results after MDD treatment with antidepressants, and 
EEG outcome at endpoint
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7
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4
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3
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%*

56%
20%

22%
40%

23.5%
35%

20%
47%

37%
31%
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4
2

5
7

3
4

2
3

9
9

 
%*

16%
8%

16%
22%

18%
23.5%

13%
20%

16%
16%

Endpoint normal Endpoint abnormal    

Sertraline

Other AD

Venlafaxine

Escitalopram

Total

*Percentage of the total of all patients belonging to the same treatment arm (both responders and non-responders)

Table 4.2   The number of responders and non-responders in the normal and abnormal 
endpoint EEG subgroups per treatment and across treatment arms. 
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Early-life stress. Having experienced ELS in general, abuse in general, 
and specific ELS events in early life, were not related to abnormal 
EEG. This was the case for 1) the entire iSPOT-D dataset (all ELS data 
available for MDD patients and controls in the iSPOT-D dataset n = 
1152, p ≥ .116), and 2) depressed subjects specifically (n = 878, p ≥ .091): 
ORs and logistic regression models were non-significant.

Figure 4.1: Treatment response for subjects with a normalized EEG at endpoint, per AD 
type (sertraline n = 19, other AD n = 20). Percentages indicate response within each respec-
tive AD type.

4.4  DISCUSSION
This study aims to extend our observations that depressed patients 
with an abnormal EEG at baseline are more likely to be a non-re-
sponder to venlafaxine or escitalopram, suggesting that sertraline is 
the preferred treatment in this subgroup (Arns et al., 2017). We in-
vestigated whether these patients show both an antidepressant (AD) 
treatment related and response related temporal change in the EEG 
and whether early life stress (ELS) increases the chance of observing 
abnormal EEG activity. We show that EEG normalization patterns – 
rated blind to diagnosis and treatment – did not significantly differ 
between sertraline and other AD treatment for eight weeks. Howev-
er, when comparing sertraline treatment to the other ADs within the 
subjects who had a normalized EEG at endpoint, response was more 
likely to be achieved with sertraline than with other treatments. A 
mediating effect of ELS in developing an abnormal EEG (with ELS in-
creasing the chance of such an EEG) was neither found in the whole 
sample of controls and depressed, nor in the depressed subsample.

To the best of our knowledge, this is the first study to explore the 
effects of ADs on abnormal EEGs of depressed patients. Several re-
search groups did study the effects of a range of ADs on seizures (in-

Responders Non-responders

other AD

sertraline

35%

74%



85

cluding sertraline), finding no adverse influence on seizure frequen-
cy (Hovorka et al,, 2000; Kanner et al., 2000; Maguire et al., 2014; 
Okazaki et al., 2011; Thomé-Souza et al., 2007). Moreover, beneficial 
treatment effects of selective serotonin (and norepinephrine) re-
uptake inhibitors (SSRIs and SNRIs) on patients with epilepsy have 
been published before (Alper et al. , 2007; Favale et al., 2003; Hamid 
& Kanner, 2013; Kanner, 2016; Specchio et al., 2004). Abnormal EEGs 
however, were not subject to such investigations before. Our results 
suggest that depression response with concurrent EEG normaliza-
tion occurs more often after sertraline treatment than escitalopram 
or venlafaxine. Note that this entails an assessment of abnormali-
ties normally deemed subclinical by neurologists. Our inconclusive 
findings on ELS (whole sample n = 1152 and MDD sample n = 878) 
provided no additional clarification that would help elucidate under-
lying mechanisms involved in both developing MDD and displaying 
an abnormal EEG (see supplement 4.5 for background and results).

Remarkable is the differential effect of sertraline in terms of treat-
ment response, compared to escitalopram and venlafaxine in sub-
jects who had a normalized EEG, which was discussed before (Arns 
et al., 2017). Only escitalopram also acts on the allosteric sites of the 
serotonin transporter and has higher selectivity for this transporter. 
Sertraline on the other hand, has the most pronounced dopamine 
active transporter inhibitory activity (Sanchez et al., 2014). Howev-
er, new literature on the different antidepressant profiles has barely 
clarified how this might have consequential effects on the (abnormal) 
human EEG. In a rodent model, sertraline prevented or diminished 
induced seizures (presumably mostly through effective inhibition of 
brain presynaptic Na+ channel permeability), comparable to antie-
pileptic drug carbamazepine (Sitges et al., 2012). Kanekar et al. (2018) 
did suggest a differential working mechanism in sertraline compared 
to other ADs, considering the increased inhibition of dopamine ac-
tive transporter by sertraline. According to Bozzi and Borelli (2013), 
altered D2R signaling (part of the dopamine system), leading to de-
creased D2R function, might be involved in epileptogenesis, adding 
to earlier findings that dopamine plays a role in juvenile myoclone 
epilepsy and general tonic clonic seizures (Ciumas et al., 2010; Ciu-
mas et al., 2008). Although the generalization of our results on EEG 



86

abnormalities to epileptogenesis is uncertain, it might help explain 
in part how EEG abnormalities in depressed patients are best treated 
with sertraline, but further research is necessary to understand the 
mechanisms that may be underlying the differential effects of treat-
ments.

LIMITATIONS

As the frequency of IEDs is highly variable and in part modulated 
by sleep (Askamp & van Putten, 2014; Geut et al., 2017), our short 
EEG recordings will have limited sensitivity to detect IEDs (Boutros, 
2018). However, the most observed abnormalities in this sample, dif-
fuse and focal slow activity, have a relatively high chance of being 
observed in one recording session as these findings are relatively 
stationary. Another limitation is that all EEG epochs were assessed 
by visual analysis. While this is still the gold standard for detection 
of paroxysms, global features (e.g. mean frequency) may be assessed 
more reliably with quantitative EEG. Further, we did not assess spon-
taneous fluctuations in these findings, nor differentiate between the 
different types of abnormalities (different types of IEDs and slowing).

In the search of treatment optimization, future studies involving 
larger samples (e.g. from consortia) allow for investigating whether 
the degree of abnormality is indicative of the chance of treatment 
success. New methods in neuroscience such as deep learning, could 
assist in this quest (Tjepkema-Cloostermans et al., 2018) as well as 
using a multimodal and integrative approach where data from vari-
ous domains is combined in order to optimize prediction, including 
cognitive, psychological and genetic information (e.g. Spronk, et al., 
2011). For future similar studies, we propose that records are inter-
preted by two independent EEG specialists, both blinded to group 
and treatment. Possible changes in EEG of participants that showed 
no abnormalities at baseline have not been investigated in the cur-
rent study. This may, however, help explain the normalization of 
EEG after treatment or lack thereof. Findings from Sitges et al. (2012) 
imply that EEG normalization could occur after sertraline treatment, 
irrespective of treatment response. As our findings were not based on 
the ratio of normalization in responders and non-responders, future 
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studies could further investigate EEG normalization of sertraline ir-
respective of response status. Future studies should also address the 
relation between duration of the EEG and likelihood of detection of 
paroxysms to define the optimal recording time within practical lim-
its. Although in previous epileptiform EEG studies SSRIs and SNRIs 
have been discussed as a treatment in general, our results show the 
importance to discriminate between specific ADs and incorporate 
several ADs within one study.

In conclusion, albeit in a small sample, our data demonstrate that 
patients showing a normalized EEG after MDD treatment comprised 
of more sertraline responders, than responders to escitalopram or 
venlafaxine. This first exploration of the relationship between EEG 
paroxysms and MDD treatment response points towards the sug-
gestion that differentiation within a psychiatric patient group that 
seems homogenous at first (with respect to its symptoms), may im-
prove treatment e�cacy. To this end, a more routinely use of EEG in 
psychiatry could assist in personalized medicine.
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4.5  SUPPLEMENT: EARLY LIFE STRESS AND 
PAROXYSMAL ACTIVITY
INTRODUCTION

Traumas, early life stress (ELS), and lifetime assaultive violence have 
been linked to cortical mal-development and increased EEG abnor-
malities (Davies, 1978; Ito et al., 1998; Ito et al., 1993; Teicher et al., 
2003, 1997). The influence of ELS on depression treatment involving 
abnormal EEGs might help elucidate possible underlying mecha-
nisms involved in both developing MDD and displaying an abnormal 
EEG.  

The number of both healthy and depressed subjects reporting an 
overall trauma, or specifically childhood abuse as operationalization 
of ELS, is higher in the abnormal EEG subgroup. To this end, like 
Arns et al. (2015), we used data from iSPOT-D (see Saveanu et al., 2015 
and Williams et al., 2011 for details). The size of this sample including 
well-characterized patients with MDD (full sample of n = 1008) al-
lowed for a reliable investigation of the effects of antidepressants, in 
a subsample of patients with a paroxysmal EEG (showing either IEDs 
or EEG background slowing, abnormal n = 58).

METHODS

To measure the neurophysiological consequences of childhood trau-
ma (as was reported in Williams et al., 2016), we used the Early-Life 
Stress Questionnaire (ELSQ, McFarlane et al., 2005). The ELSQ com-
prises 18 items, which assess exposure to specific traumatic events 
in the first 17 years of life (see supplement 4.6 for the entire ques-
tionnaire) and which are equivalent to the trauma items assessed by 
the Child Abuse and Trauma Scale (Chu et al., 2013). Each item is 
scored dichotomously for the presence/absence of exposure to each 
type of trauma. As reported by Williams et al. (2016), in the complete 
iSPOT-D sample the extent of exposure to traumatic events was not 
found to differ across site or across country. For assessing the rela-
tionship between ELS and EEG abnormalities, both ELS in general 
and abuse in particular, were tested binary (OR with CI) and con-
tinuously (summing up all experiences ELS events, testing through 
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logistic regression), for their neurophysiological effect (having an ab-
normal EEG or not). Every questionnaire item was also singularly 
tested binary through the calculation of ORs.

RESULTS

Having experienced ELS in general, abuse in general, and specific 
ELS events in early life, were not related to abnormal EEG. This was 
the case for 1) the entire iSPOT-D dataset (all ELS data available for 
MDD patients and controls in the iSPOT-D dataset n = 1152, p ≥ .116), 
and 2) depressed subjects specifically (n = 878, p ≥ .091): ORs and lo-
gistic regression models were non-significant. Only for depressed, 
an opposite trend was visible where subjects with an abnormal EEG 
were 2.2 times less likely to have had experienced ELS than those with 
a normal EEG (p = .091).

DISCUSSION

The absence of a confirmed association between ELS and abnormal 
EEGs was not in line with the literature, where abused and trauma-
tized children showed an increased chance of presenting with elec-
trophysiological abnormalities (Davies, 1978; Ito et al., 1998; Ito et 
al., 1993; Teicher et al., 2003, 1997). Inconsistencies may result from 
different methods of categorizing deviant EEGs. Our findings com-
prise events that might not be severe enough, or do not contain par-
ticular characteristics, to be linked to ELS. Importantly, in the same 
full-sample dataset as currently investigated, Williams et al. (2016) 
showed that specifically the ELS type abuse (either physical, sexual, 
or emotional) was associated with non-response to AD treatment, 
especially to sertraline. Both these findings are opposite of the ex-
pected effect based on the ELS literature: After ELS would have in-
creased the chance of an abnormal EEG, these depressed presumably 
should in turn benefit from sertraline (Arns et al., 2015). Perhaps ELS 
could account for the less frequent non-response to sertraline, in the 
abnormal EEG subgroup. Our sample size, however, does not allow 
for further division into subgroups to investigate such a hypothesis.
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4.6  SUPPLEMENT: EARLY LIFE STRESS  
QUESTIONNAIRE ITEMS

ELSQ items: (Yes/No) Yes No    

Were you born prematurely- or experience other birth complications?

Were you adopted?

Did you undergo major surgery or repeated hospitalization?

Did you experience a life-threatening illness or injury?

Did you experience sustained bullying or rejection by schoolmates?

Were you physically abused?

Were you sexually abused?

Were you emotionally abused?

Did you experience extreme poverty or neglect?

Did you witness first�Kand a natXral disaster such as earthquake, Ŵood or fire? 

Was your house destro\ed b\ fire or other means?

Did you witness warfare?

Did your parents divorce or separate?

Were you separated for a long period from a parent, brother or sister?

Was there sXstained conŴict witKin \oXr famil\"

Did one of your parents, a brother or sister die?

Did one of your parents, a brother or sister experience a life-threatening illness?

Did you witness domestic violence within your family?

Table S4.1   Items of the Early Life Stress Questionnaire
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4.7  SUPPLEMENT: EEG ABNORMALITIES

ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Base-
line

1
0
1
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
1
1
0
1
1
0
1
1
1
0
0
0

End-
point

1
1
0
1
1
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

Base-
line

0
1
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1

End-
point

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Base-
line

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

End-
point

1
1
0
1
1
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

Table S4.2  Characteristics of abnormalities on the individual level

1Binomial scoring of having a normal (0) or abnormal (1) EEG

Slow1 IED1

Any
abnormal 
activity1

ID

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Base-
line

1
0
1
1
1
1
1
1
1
1
1
0
0
0
1
0
0
1
1
1
1
0
1
0
0
1
1
0

End-
point

0
1
0
0
0
0
0
0
0
0
 
0
1
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0

Base-
line

0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
0
1
0
1
1
0
0
1

End-
point

0
1
0
0
0
0
0
0
0
1
 
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

Base- End-
point

0
1
0
0
0
0
0
0
0
1
 
0
1
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0

line

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Slow1 IED1

Any
abnormal 
activity1



92

2DIFF 7 = Mild slowing of the background
3Sites: L T = left temporal, R T = right temporal

ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Type of
slow2

DIFF 7
 
DIFF 7, theta
Transients
Bilateral
Transients
Both temp
Transients, theta
 
Transients
Transients
Transients
Transients
 
 
Transients
Transients
Transients
Slow focus
Transients
 
Transients
Transients 
 
Transients
Slow
Transients

Site
of slow3

 

 
 
L T
Maximal L T
R T
Independent
R T
 
R T
R T
R T
L T
 
 
R T
L T
R T
R T
R T
 
R T
R T
 
R T
Diffuse
L T

Type
of IED

 

 
 
 
L T
 
Independent
 
Theta
 
 
 
 
Wickets
Theta burst 
 
 
 
 
 
Theta bursts
 
 
Sharp
 
 
 
Wicket spikes
Sharp
Sharp

Site
of IED3

 
L T
 
 
 
 
 
 
Maximal L T
 
 
 
 
L T
L T
 
 
 
 
 
Diffuse
 
 
L T
 
 
 
Wicket spikes
L T
L T

Comments

Background borderline slow
Focal mild slowing
Background borderline slow, mild
Mild
Moderate severity
Mild
Mild
Mild
Paroxysmal/moderate severity
Mild
Mild
Mild
Mild
Barely normal background/mild
Theta burst
Mild
Mild
Mild
Moderate severity
Mild
Frequent, moderate severity
Mild
Mild
Moderate severity
Mild
Slow background/moderate severity
Mild
Mild
Moderate severity
Moderate severity

Table S4.2, continued

Baseline
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ID

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

Type of
slow

Theta
 
Transients
Transients
Theta
Theta
Theta
 
Transients
Transients
Transients
 
 
 
Theta
 
 
Focal slowing
Theta
Transients
Theta
 
Transients, theta
 
 
Focal slowing

Theta

Site
of slow

Diffuse
 
R T
L T
Diffuse
Diffuse
Diffuse
 
L T
L T
R T
 
 
 
 
 
 
Both temp
Diffuse
L T
Diffuse
 
R T
 
 
Both temp

Diffuse

Type
of IED

 

 Theta bursts
 
 
 
 
 
 
 
 
 
RMTD
Theta burst
Delta burst
 
Theta burst
Delta burst
Both temp
 
 
 
Theta bursts
 
Theta bursts
Theta bursts

Site
of IED

 
Diffuse
 
 
 
 
 
 
 
 
 
Both temp
Maximal R T
R T
 
Theta burst
Diffuse
 
 
 
 
Diffuse
 
Maximal L T 
Diffuse

Comments

Moderate severity
Many episodes. Very abnormal
Mild
Mild
Barely normal background, mild
Mild
Barely normal background, mild
Borderline diffuse slowing, mild
Mild
Sharp transient, moderate severity
Mild
Controversial paroxysms, mild
Theta paroxysm, moderate severity
6ignificant abnormalit\
Borderline diffuse slowing, mild
One theta burst, mild
Maximal L T
Foci are independent, moderate severity
Moderate severity
Mild
Moderate severity
Mild slowing
Mild
Mild focal slow
Moderate severity
Slowing on both temp. regions, 
moderate severity
Mild slow

Table S4.2, continued

Baseline
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ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

EEG
quality

Type
of slow

Theta
Theta
 
Theta
Theta
Theta
Theta
 
Theta
Theta
 
 
 
 
Theta
 
 
 
 
 
Delta

Site
of slow

 L T
L T
 
L T
Both temp
R T
L T
 
Both temp
R T

Site
of IED

 
 
 
 
 
 
 
 
Paroxysmal/moderate severity
 
 
 
 
Barely normal background, mild
L T
 
 
 
 
 
Diffuse

IED/other
comments

Mild
Mild
 
Mild
Moderate severity
Mild
Mild
 
Paroxysmal/moderate severity
Mild
 
 
 
Barely normal background, mild
Theta burst
 
 
 
 
 
Delta burst, moderate severity
 
 
 
 
 

Table S4.2, continued

Endpoint, week 8
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ID

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

EEG
quality

Bad, excluded

Type
of slow

 
Theta
 
 
 
 
 
 
 
 
 
 
Theta
Theta
 
 
Delta bursts
 
 
 
 
Theta
 
Theta
 
 
Theta
 

Site
of slow

  
 
 
 
 
 
 
 
 
 
 
 
 Diffuse 
 L T
 
 
Delta bursts
 
 
 
 
 Diffuse
 
 L T
 
 
 Diffuse

Site
of IED

 
  Diffuse
 
 
 
 
 
 
 
L T
 
 

 
 
Diffuse, but maximal L T
 
 
 
 

 

IED/other
comments

 
Bursts, significant abnormal
 
 
 
 
 
 
 
Sharp transient, moderate severity
 
 
Theta paroxysm, moderate severity

 
 
Delta bursts, significant abnormal
 
 
 
 
Mild slowing
 
Mild focal slow
 
 
Mild slow
 
 
 
 
 

Table S4.2, continued

Endpoint, week 8
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Linked mastoids Bipolar montage

Figure S4.1: Example of an EEG segment without abnormal events, displayed in two 
montages.

Filter settings: 1-45 Hz. 
Timescale: 1 s per vertical line.
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Linked mastoids Bipolar montage

Figure S4.2: Example of an EEG segment with a theta burst, displayed in two montages. 
Note that in the bipolar montage the burst is mainly located to the temporal regions. 

Filter settings: 1-45 Hz. 
Timescale: 1 s per vertical line.
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Linked mastoids Bipolar montage

Figure S4.3: Example of an EEG segment with a delta burst, displayed in two montages. 

Filter settings: 1-45 Hz. 
Timescale: 1 s per vertical line.
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Linked mastoids Bipolar montage

Figure S4.4: Example of an EEG segment with sharp activity (a spike) over the left tempo-
ral region, displayed in two montages. 

Filter settings: 1-45 Hz. 
Timescale: 1 s per vertical line.
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ABSTRACT

Introduction
Patients with major depressive disorder (MDD) and abnormal EEG pat-
terns were more likely to be non-responsive to the antidepressants 
escitalopram and venlafaxine in comparison to patients without EEG 
abnormalities. Response to sertraline was not different for patients 
with or without EEG abnormalities. Assessment of EEG is typically per-
formed by visual inspection, characterized by low inter-rater reliabil-
ity. We aim to utilize computed features for automated assessment 
of abnormal EEGs in the depressed population to assist in treatment 
prediction.

Methods and materials
EEG epochs (2 min, eyes closed) from depressed patients and healthy 
controls (n = 1241) were visually assessed for abnormal components 
(slowing, asymmetry, paroxysms). In addition, three quantitative fea-
tures were extracted: the dominant frequency, the temporal and spatial 
brain symmetry index (tBSI and sBSI), complemented with the likeli-
hood that the epoch contained an epileptiform discharge, using the 
output of a convolutional neural network (CNN). The four features 
were logistically regressed on EEG type (visually normal vs abnormal) 
and combined in a random forest model, trained on predicting treat-
ment outcome per antidepressant drug (for the depressant sample 
only: n = 935).

Results
Outcomes from the CNN, the dominant frequency and the tBSI sig-
nificantly differed between normal and abnormal EEGs (all ps < .001). 
Our attempts to replicate response prediction (using visual analysis) 
with the random forest model was not successful, with areas under the 
curve of 0.49-0.51. 

Discussion
CNN probability, dominant frequency and tBSI successfully identified 
EEG abnormalities in agreement with visual analysis. The random forest 
model did not reliably predict treatment outcome.
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5.1  INTRODUCTION

Arns and colleagues (2017) showed that patients with major 
depressive disorder (MDD) with abnormal EEG patterns 
are more likely to be non-responsive to the antidepressants 

(ADs) escitalopram and venlafaxine in comparison to patients with-
out those EEG abnormalities. In the same study, it was shown that re-
sponse to sertraline was not different for patients with or without EEG 
abnormalities. Abnormal activity included paroxysmal activity (e.g. 
isolated epileptiform discharges, intermittent focal slowing) or diffuse 
slowing of the background pattern. Furthermore, in a follow-up study, 
depression response with concurrent EEG normalization occurred 
more often after sertraline treatment than escitalopram or venlafaxine 
(van der Vinne et al., 2019). These findings suggest that the EEG can be 
used to guide patients to the right antidepressant.
Assessment of EEG is typically performed by visual analysis. A limita-
tion of this is the need for human experts and low interrater reliabil-
ity. As an example, six board-certified neurophysiologists achieved an 
agreement (Fleiss’s kappa) of 55% when classifying 300 EEGs as normal 
or containing epileptiform discharges or seizures (Grant et al., 2014). It 
is likely that classifying less evident abnormalities are even more prone 
to a high inter- and intra-rater variability. This motivates exploration 
of more advanced forms of detection of abnormal EEG patterns using 
quantitative techniques.
Extracting (spatio-)temporal features of the EEG using e.g. Fourier 
transforms, wavelets or coherence is well established (Lodder & Van 
Putten, 2011; Van Putten 2008). More recently, machine learning and 
deep learning have been explored for detection of anomalies. This in-
cludes detection of interictal epileptiform discharges (Tjepkema-Cloos-
termans, de Carvalho, & van Putten, 2018; Van Leeuwen et al., 2019; da 
Silva Lourenço, Tjepkema-Cloostermans, Teixeira, & van Putten, 2020) 
or assessment of EEG patterns for prediction of neurological outcome 
in patients after cardiac arrest (Tjepkema-Cloostermans et al., 2019, 
2017). 
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As the abnormal EEG patterns assessed by visual analysis in our pre-
vious work (Arns et al., 2017) contained both paroxysms and diffuse 
slowing, we combined two different quantitative techniques. For the 
paroxysmal abnormalities in the EEGs the output of a deep neural net 
was used (da Silva Lourenço et al., 2020), complemented with quanti-
tative assessment of mean frequency, asymmetry (through the spatial 
Brain Symmetry Index) and intermittent slowing (through the tempo-
ral Brain Symmetry Index).
In this work, we aim to predict treatment response using these quanti-
tative metrics. We further explore how this approach performs in com-
parison with earlier work described in Arns et al. (2017) using visual 
analysis. 

5.2 METHODS AND MATERIALS
5.2.1 DESIGN

Data were extracted from the international Study for Predicting Op-
timized Treatment in Depression (iSPOT-D). This study was an inter-
national multicenter, randomized, prospective open-label trial (phase 
IV clinical trial), in which MDD subjects were randomized to escit-
alopram, sertraline, or venlafaxine-XR treatment in a 1:1:1 ratio. The 
study protocol details have been published by Saveanu et al. (2015) and 
Williams et al. (2011).
The iSPOT-D sample consisted of 1008 patients with MDD and 336 
healthy controls, with 58 subjects having an abnormal EEG (identi-
cal to the sample from in Arns et al. (2017)). The same study provides 
a complete description of the study assessments, inclusion/exclusion 
criteria, diagnostic procedures, treatment and characterization of this 
paroxysmal subgroup. In summary, the primary diagnosis of nonpsy-
chotic MDD was confirmed at the baseline visit (before randomiza-
tion) using the Mini-International Neuropsychiatric Interview (MINI-
Plus), according to the Diagnostic and Statistical Manual of Mental 
Disorders, fourth edition (DSM-IV) criteria, and a score ≥16 on the 
clinician-rated 17-item Hamilton Rating Scale for Depression (HRSD). 
All MDD subjects were either AD medication naive or, if previous-
ly prescribed an AD, had undergone a washout period of at least five 
half-lives before the baseline visit clinical and EEG assessments. After 
the baseline visit, MDD subjects were randomized to one of the three 
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AD medications. After eight weeks of treatment, subjects were tested 
again using the HRSD and EEG, further referred to as endpoint. Pa-
tients provided written informed consent. This study was approved by 
the local institutional review boards at all the participating sites and 
was registered at ClinicalTrials.gov (NCT00693849).

5.2.2 PRE AND POST-TREATMENT ASSESSMENTS

EEG recordings were performed at baseline and at endpoint, using a 
standardized methodology and platform (Brain Resource Ltd, Austra-
lia). Details of this procedure have been published elsewhere (Williams 
et al., 2011), and details of the reliability and across-site consistency of 
this EEG procedure have also been published (Paul et al., 2007; Wil-
liams et al., 2005). In summary, EEG data were acquired from 26 chan-
nels: Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, 
CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz, and O2 (NuAmps; 10–20 elec-
trode international system). EEG data were collected for 2 min with 
eyes closed (EC). Data were referenced to averaged mastoids with a 
ground at AFz. Horizontal eye movements were recorded with elec-
trodes placed 1.5 cm lateral to the outer canthus of each eye. Vertical 
eye movements were recorded with electrodes placed 3 mm above the 
middle of the left eyebrow and 1.5 cm below the middle of the left 
bottom eyelid. Skin resistance was <5 kOhm for all electrodes. A low-
pass filter with an attenuation of 40 dB per decade above 100 Hz was 
employed prior to digitization with a sampling rate of 500 Hz.

5.2.3 EEG ANALYSIS

A high-pass filter of 0.5 Hz, a low-pass filter of 25 Hz, and notch fil-
ters of 50 or 60 Hz (depending on the country in which the data were 
recorded) were applied. Data were EOG corrected using a regression 
based technique similar to the method described by Gratton, Coles, 
and Donchin (1983). No other artifact rejection was applied to the data.

5.2.4 ORIGINAL VISUAL ASSESSMENT

For the distinction between normal and abnormal EEGs in Arns et al. 
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(2017), data were visually inspected and classified using Brain Vision 
Analyzer (Brainproducts, Germany) by a professional board-certified 
electroencephalographer, neurologist and psychiatrist, who was blind-
ed to the subject’s status (patient vs control), clinical data (response 
vs non-response to treatment), assessment moment (baseline vs end-
point) and treatment arm. Details on EEG data analysis and validation 
can be found elsewhere (Arns et al., 2016). Eyes closed awake EEG data 
with linked ears and queens-square montage were examined for the 
presence of any focal or generalized slowing (EEG slowing). Diffuse 
slowing was defined as a background frequency consistently below the 
alpha range (Niedermeyer, 2005). Focal slowing was defined as rhythms 
slower than alpha (theta or delta, i.e. <8 Hz) consistently present in a 
particular location (Krauss, Fisher, & Kaplan, 2010). Paroxysmal activity 
was defined as any EEG pattern (with or without a sharp contour) that 
emerges and disappears paroxysmally from the ongoing background 
activity (Niedermeyer, 2005). Non-paroxysmal, focal or generalized, 
slow wave activity was also defined, which could occur more or less 
continuously (note that records were almost entirely fully awake re-
cords) with some waxing and waning (Sharbrough, 2005). Finally, the 
presence of any of the so-called controversial waveforms (e.g., wick-
et spikes) was also documented. These waveforms are paroxysmal but 
are of uncertain significance (Boutros, 2014). Supplement 4.7 contains 
descriptive and visual information of abnormalities on the individual 
level. Classification of all abnormalities was in accordance to the guide-
lines published by the International Federation of Clinical Neurophysi-
ology (Noachtar et al., 1999).

5.2.5 FEATURE EXTRACTION

EEGs of both depressed patients (n = 935) and healthy controls  
(n = 306) were exported to European Data Format (Kemp, Värri, Rosa, 
Nielsen, & Gade, 1992). Processing was done with in-house developed 
software on a MatLab platform (The MathWorks, Inc, Natick, MA), 
according to previously described methods (Tjepkema-Clooster-
mans et al., 2018; van Putten 2006a, 2007; van Putten et al., 2004a). 
All analyses were performed after re-referencing to the longitudinal 
bipolar montage.
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5.2.5.1 DEEP LEARNING MODEL

For the detection of paroxysmal anomalies, we used an existing con-
volutional network that was previously trained for the detection of 
interictal epileptiform discharges in epilepsy patients. As described 
by da Silva Lourenço and colleagues (2020), this VGG C convolutional 
network was trained on interictal EEG recordings from patients with 
focal (50 patients) and generalized (49 patients) epilepsy. Normal 
EEGs (67 patients) were also included. The EEG data in the 0.5-35 Hz 
range were filtered and downsampled to 125 Hz. Each recording was 
split into 2 s non-overlapping epochs, yielding a 18×250 (channels × 
samples) matrix for each epoch. More details can be found in da Silva 
Lourenço et al. (2020). The model provides the probability p1 (range 
0 – 1, with 0 being normal) for the presence of an epileptiform dis-
charge per 2 s epoch. To rule out coincidental false findings, we chose 
to take the average of the probability p1 of the three most extreme 
epochs, instead of the one most extreme epoch. 

5.2.5.2 DOMINANT FREQUENCY

Because the abnormalities in patients with MDD not only consist 
of short paroxysmal events, the dominant frequency was calculated 
as the largest peak in the power density spectrum, with a minimum 
peak height of 0.5 uV2/Hz and a frequency between 5 and 15 Hz. Pow-
er spectrum was estimated using Welch’s method, with half-over-
lapping 2 s windows. We extended the frequency range of the alpha 
peak frequency utilized in Arns et al. (2017) to prevent other domi-
nant frequencies (especially below 8 Hz) to remain unnoticed. 

5.2.5.3 SBSI AND TBSI

As the dominant frequency will not detect frequency fluctuations in 
the EEG, nor by construction, spatial asymmetries, two additional 
metrics were applied, the spatial and temporal brain symmetry index 
(BSI; Van Putten, 2007). The BSI was developed to assist in the visu-
al interpretation of the EEG, by quantifying spatial (left-right hemi-
sphere, sBSI) and temporal (tBSI) characteristics.  
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The revised spatial BSI (sBSI) is the absolute value of the relative dif-
ference in the average spectral density of the right and left hemi-
spheres in the frequency range from 1 to 25 Hz. 
The sBSI is defined as:

with

for the right hemisphere, and a similar expression for the left hemi-
sphere. Here, an(ch,t) is the Fourier coe�cient with index n of chan-
nel ch, evaluated at time t, corresponding to a particular epoch  
[t – T, t] with duration T.  In the current work we set T = 4 s. M is the 
number of channels per hemisphere and K is the number of Fourier 
coe�cients. Additional details have been published previously (van 
Putten 2007; van Putten et al., 2004b). The sBSI is an index, ranging 
from 0 (perfect symmetry) to 1 (maximum asymmetry).

In order to quantify temporal changes in spectral characteristics of 
EEG, the temporal brain symmetry index (tBSI) was proposed and 
revised by Van Putten (2006). The revised tBSI is defined as the nor-
malized difference between spectral estimates of two EEG epochs 
and thus provides a measure of temporal invariance or symmetry. 
The tBSI is defined as:

with

for the right hemisphere, and a similar expression for the left hemi-
sphere. Here, g is an offset factor, and t0 a suitable reference. In this 
work we set g = 25 and for t0  we chose a moving reference epoch of 
8 s before the analyzed epoch (t). Similar to the sBSI, the tBSI rang-
es from 0 (no temporal spectral differences) to 1 (maximal temporal 
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spectral differences). 
To avoid coincidental extreme scores, we averaged the three most 
extreme sBSI and tBSI segments for every subject.

5.2.6 STATISTICS

We compared the four predictors to the binary coded groups with 
normal/abnormal EEGs according to visual assessment as reported 
in Arns et al. (2017). To this end, we employed logistic regression for 
every single predictor on the binary EEG outcome. Normal distribu-
tions are not assumed in logistic regression; therefore, it poses no 
problem for the non-normally distributed predictors CNN probabili-
ties, sBSI and tBSI. To correct for multiple testing, the alpha level was 
set to .025 (Bonferroni correction for four predictors). 

5.2.7 TREATMENT PREDICTION 

All individual features (CNN probability, dominant frequency, tBSI, 
sBSI) were included in a random forest model. Hereby, for each type 
of AD random forest classifiers were trained and evaluated using 
5-fold cross-validation. Each random forest classifiers consisted of 
500 individual decision trees, and the maximum number of terminal 
nodes was set to three. The output of the classifiers is the probability 
(ranging 0-1) for a patient responding to treatment (≥50% reduction 
on the HRSD). Random forest classification was done using the soft-
ware package R (Liaw & Wiener, 2002; R Core Team 2014).  Discrim-
ination of the model was assessed with receiver operator character-
istic (ROC) analyses. 

5.3  RESULTS
5.3.1 SINGLE PREDICTORS OF ABNORMALITY

Logistic regression on the groups of visually classified normal and 
abnormal EEGs, revealed significantly different features outcomes (as 
measured by the mean of the three most extreme CNN probabilities 
per subject (figure 5.1a), the three epochs with the most extreme tBSI 
(figure 5.1b), and the dominant frequency (figure 5.1c). No differences 
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were found with the sBSI. Additional information on test outcomes 
and distribution of results can be found in supplement 5.5.

Figure 5.1: Comparison of the individual features to visual analysis of EEGs conform Arns et 

al., 2017). a: means of convolutional neural network (CNN) probabilities of an epoch being 

abnormal (the three most extreme abnormal epochs; with SEM bars, representing 95% standard 

error of the mean). b: tBSI means (the three most extreme epochs; with SEM bars representing 

95% standard error of the mean). Note that the significant difference is barely visible here. c: 

Histogram of the dominant frequency, per group (visually determined normal and abnormal 

EEGs), with weighted number of observations in percentage (due to large subsample size dif-

ferences).
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5.3.2 TREATMENT PREDICTION
Training and validating random forest classifiers per medicament 
using 5-fold cross-validation resulted in ROC curves with a very 
poor AUC (ranging from 0.49 - 0.51), with wide confidence intervals  
(figure 5.2). This indicates that with the current method, in which the  
four predictors are combined into a random forest classifier, it is not 
possible to predict treatment response reliably.

Figure 5.2: ROC curves for the prediction of treatment response using random forest mod-
els. The red lines indicate the average ROC curve per antidepressant, while the grey zones 
indicate the 95% confidence intervals based on 5-fold cross validation.

5.4  DISCUSSION
We aimed to predict treatment response using four quantitative met-
rics and explored how this approach performs in comparison with 
earlier work. Subjects with normal and abnormal EEGs assessed with 
visual analysis as reported in Arns et al. (2017) differed significantly on 
three out of four computed features for detecting abnormalities in 
our study. This confirms our hypothesis that the computed features 
can detect differences between the two groups that were visually 
identified earlier. 
Interestingly, the most meaningful group difference was visible for 
the CNN, where group means of 0.63 (visually abnormal EEG) and 
0.21 (visually normal) on a scale of 0 to 1 indicate a possibly useful 
clinical application. Less useful are the mean dominant frequencies 
in the groups of 9.2 (visually abnormal) and 9.8 (visually normal), as 
these mean frequencies are both generally interpreted as normal. 
The significant, but extremely small difference between the mean 
tBSIs renders clinical usage impossible.
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We developed a new experimental method to create computer-assist-
ed detection of abnormalities for the benefit of AD treatment pre-
diction. The combination of the promising predictors in a random 
forest model did not result in the hypothesized treatment predic-
tion, with AUCs indicating treatment success of practically 50%. Our 
method therefore unfortunately yielded no clinically relevant results 
up to now. As the importance of null-findings is increasingly empha-
sized in psychology and psychiatry – specifically for EEG biomarkers 
by Widge and colleagues (2019) – we report these results.
We note that the EEG abnormalities occurrence according to Arns 
et al. (2017; which data was used for the current study) concerned 
an estimated 5-10% of the population. This was su�cient for estab-
lishing an effect through statistics. Not only did they find the best 
treatment response for those with EEG abnormalities with the AD 
sertraline, normalization of the EEG in those taking sertraline was 
also associated with response (van der Vinne et al., 2019). However, 
our strongest extracted feature of detecting abnormalities, the CNN, 
typically needs a large sample in order to distinguish patterns. The 
lack of an effect might therefore be due to the limited number of ab-
normal EEG subsample, despite the large entire sample. As a result, 
the CNN might not be able to pick up patterns that held prognostic 
capabilities when assessed visually by a clinician (Arns et al; 2017; van 
der Vinne et al., 2019).
In contrast, in particular for machine learning algorithms, a small 
and unbalanced data set is known to limit performance (Bauder & 
Khoshgoftaar, 2018; Johnson & Khoshgoftaar, 2019). Furthermore, as 
Roy et al. (2019) state in a systematic review on deep learning, fea-
tures learned through a deep net might be more effective or expres-
sive. Therefore, different treatment prediction outcomes between 
Arns et al. (2017) and our current study might originate from the 
more sophisticated abnormalities detection by especially the CNN, 
picking up signals that are invisible to the human eye. As this con-
tradicts our previous possible explanations, future studies are all the 
more important, clarifying how our visual methods could be better 
approached by computer-assisted methods. 
As the deep net processes segments that were subjected only to EOG 
artifact rejection and filtering, the risk exists that non-neural arti-
facts influence the outcome. We should consider this having a con-
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tribution to the null result for MDD response prediction. However, 
by trying to reduce artifacts through a narrow filtering range, and 
by reducing input size (and consequently computational complex-
ity) through downsampling to 125 Hz, we expected this effect to be 
limited.
We were otherwise surprised that the CNN developed for the detec-
tion of interictal discharges showed good performance in identifying 
the specific and notably “light” abnormalities, in a different type of 
patient population. This deep net developed by da Silva Lourenço 
et al. (2020) initially seemed the best candidate for the detection 
of EEG abnormalities in our patient group, although its relevance 
is diminished with the established lack of capabilities in treatment 
outcome prediction. Our prediction efforts did not reach what the 
collaboration of Wu and colleagues did achieve (Wu et al., 2020). 
Their latent-space machine-learning algorithm trained on one data-
set and validated on multiple independent datasets, identified a ser-
traline-predictive EEG signature, compared to placebo. Their meth-
od is in line with a future study suggestion of our own: not training 
an algorithm on biomarkers conform our current methods, but spe-
cifically on the EEG and response profiles themselves. This could be 
complemented by another method, the highly comparative time se-
ries (Fulcher et al., 2013). It allows to organize time-series datasets au-
tomatically, according to their properties. The authors demonstrated 
its utility on a dataset of EEGs, distinguishing between healthy and 
epileptic EEGs with a classification rate exceeding 95%.
After successfully extracting features for the detection of mild EEG 
abnormalities in a large depressed sample, our efforts to use these 
promising biomarkers – that are traditionally assessed visually – 
unfortunately did not facilitate treatment prediction. As we live in 
the era where deep learning algorithms are continuously being im-
proved, this method could be explored further, paving the road to-
wards optimized treatment prediction.
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5.5  SUPPLEMENT: ADDITIONAL TEST RESULTS PAR. 5.3.1
ADDITIONAL TEST RESULTS

COMPARISON OF EXTRACTED FEATURES TO VISUAL ANALYSIS –  

INCLUDING DISTRIBUTION PLOTS
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Facing page:
Figure S5.1 (top): Comparison of means (with SEM bars, left) and visualization of distribu-
tion through a boxplot (right) of convolutional neural network (CNN) probabilities of the 
averaged three most extreme abnormal epochs. Grouping conform visual analysis reveals 
significantly different CNN probabilities at the p<.001 level. Outliers are represented by 
dots (SD>2).

Figure S5.2 (bottom): Comparison of means (with SEM bars, left) and visualization of 
distribution through a boxplot (right) of the averaged three most extreme tBSIs, for the 
groups with visually determined normal and abnormal EEGs. Grouping conform visual 
analysis reveals significantly different tBSI means at the p<.001 level. Outliers are repre-
sented by dots (SD>2).
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ABSTRACT

Introduction
Using pre-treatment biomarkers to guide patients to the preferred an-
tidepressant medication treatment could be a promising approach to 
enhance its current modest response and remission rates. This open-la-
bel prospective study assessed the effectiveness and feasibility of using 
such pre-treatment biomarkers, by using previously identified EEG fea-
tures (paroxysmal activity; alpha peak frequency; frontal alpha asym-
metry) to inform the clinician in selecting among three different anti-
depressants (ADs; escitalopram, sertraline, venlafaxine) as compared 
to Treatment As Usual (TAU). 

Methods and materials
EEG data were obtained from 195 outpatients with major depressive 
disorder prior to eight weeks of AD treatment. Primary outcome mea-
sure was the percentage change between before and after treatment 
on the Beck Depression Inventory-II. We compared TAU and EEG-in-
formed prescription through AN(C)OVAs. Recruitment started with pa-
tients receiving TAU to establish baseline effectiveness, after which we 
recruited patients receiving EEG-informed prescription. 

Results
108 patients received EEG-informed prescription and 87 patients re-
ceived TAU. Clinicians and patients were satisfied with the protocol. 
Overall, 70 (65%) of the EEG-informed clinicians followed recommen-
dations (compared to 52 (60%) following prescriptions in the TAU 
group), establishing feasibility. Depressive symptoms reduced sig-
nificantly more in the EEG-informed (36.8%) compared to the TAU 
(23.9%) group (p = .024; between groups d = 0.42; 39% responders 
in EEG-informed vs 27% responders in TAU; number-needed-to-treat 
= 8). Intention-to-treat analysis including all patients (n = 195) yielded 
similar results. 

Discussion
We here confirm that treatment allocation informed by EEG variables 
previously reported in correlational studies, was feasible and yielded 
significantly better clinical response than TAU. 
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6.1  INTRODUCTION

The treatment of major depressive disorder (MDD) is charac-
terized by modest response and remission rates, while the 
disease affects increasing numbers of people worldwide, 

from 183 million in 2005, to 216 million in 2015 (Vos et al., 2016). Clin-
ical e�cacy ranges from 37% remission after a first antidepressant 
(AD) prescription to declining remission rates of respectively 31%, 
14%, and 13%, after each consecutive AD trial, including augmenta-
tion strategies (Rush et al., 2006).

One way to improve response and remission rates in the early AD 
treatment steps for major depressive disorder (MDD) is to better tar-
get the medications to particular patients. In that regard, identifica-
tion of pre-treatment biomarkers which can inform choices between 
or among treatments offers a promising approach, although a need 
for replication and out of sample validation have been suggested 
(Widge et al., 2019).

To develop such biomarkers, we initially collected pre-treatment EEG 
data, in the International Study to Predict Optimized Treatment (iS-
POT-D; Saveanu et al., 2015; Williams et al., 2011). The initial phase 
of the study randomized 1008 patients with non-psychotic MDD to 
eight weeks of treatment with either escitalopram, sertraline or ven-
lafaxine-XR. Overall response (64%) and remission (46%) rates did 
not distinguish among these three medication groups, indicating 
comparable clinical e�cacy on the group-level based on randomized 
treatment allocation.

Furthermore, several EEG parameters were investigated as predic-
tors for response and remission (using pre-registered hypotheses). 
Three promising biomarkers emerged that seemed to inform which 
patients are preferentially served by which AD medication, as both 
drug-specific as well as drug-class specific predictors, opening up the 
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possibility for EEG-guided treatment (or stratification). The first was 
frontal alpha asymmetry (FAA): Right FAA was found to be related to 
response and remission (and left FAA to non-response and non-re-
mission) to the SSRIs escitalopram and sertraline in females only. 
No such effect was observed for the SNRI venlafaxine (Arns et al., 
2016). A post-hoc simulation showed that assigning patients to an 
SSRI or SNRI merely based on their FAA, resulted in a 7-14% higher 
remission rate (Arns et al., 2016). The second biomarker was alpha 
peak frequency (APF): A low APF was associated with better response 
to sertraline and no effects for escitalopram and venlafaxine (Arns, 
Gordon, & Boutros, 2017). The third biomarker was abnormal EEG 
activity: abnormalities like isolated epileptiform discharges (IEDs) 
were associated with non-response to escitalopram and venlafaxine, 
and no such effect for sertraline (Arns, Gordon, & Boutros, 2017). In 
addition, EEG normalization after eight weeks on sertraline medi-
ated AD response, suggesting sertraline specifically worked on the 
reported EEG abnormalities (van der Vinne et al., 2019a).

In summary, our prior work revealed drug-specific (sertraline), drug 
class-specific (selective serotonin reuptake inhibitor (SSRI) vs se-
rotonin norepinephrine reuptake inhibitor (SNRI)) and sex-specif-
ic EEG parameters that could aid in resolving the heterogeneity in 
clinical response to ADs, and that could be used to choosing among 
ADs, going from a stepped-care approach to a biomarker-informed 
approach.

In order to determine whether medication could be prescribed based 
on these baseline EEG biomarkers, we conducted a prospective feasi-
bility trial, in which we compared EEG-informed treatment recom-
mendation with Treatment As Usual (TAU). We report our findings 
in developing and implementing this clinical decision-making tool 
and providing power calculations to inform future clinical trials. Our 
null hypothesis was that clinical response is not worse for EEG-in-
formed treatment allocation, compared to TAU. If, alternatively, 
EEG-informed prescription was better, we expected group differenc-
es to be small, given the comparison of two active treatments.
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6.2  METHODS AND MATERIALS 
6.2.1  DESIGN 

This was an open-label, naturalistic study, which was deliberately cho-
sen to mimic real-world practice, with the aim of optimizing the trans-
latability to real world settings. We investigated 195 outpatients with 
non-psychotic MDD, recruited between June 2015 and July 2019 in an 
outpatient clinic in Leeuwarden, the Netherlands. The primary diag-
nosis of nonpsychotic MDD was confirmed by a psychiatrist or spe-
cialized clinical psychologist, according to DSM-IV criteria, and a score 
≥14 on the Dutch 21-item Beck Depression Inventory Second Edition 
(BDI-II-NL, Beck, Steer, & Brown, 1996; Van der Does, 2002). Only data 
from patients who were prescribed with ADs were included. All MDD 
patients were allowed to enter the study when already on an AD (since 
Van der Vinne et al. (2019b) demonstrated that the predictive value of 
FAA was not influenced by medication status). 
To establish baseline effectiveness, recruitment started with MDD pa-
tients who had not received EEG-informed prescription, and received 
TAU. Once the biomarker algorithm based on our prior work was fin-
ished, we began to recruit patients for the second arm – those who 
were to receive EEG-informed prescription (see paragraph 6.2.2). After 
eight weeks of AD treatment, all patients were tested again using the 
BDI. Both EEG assessments and week-8 measurements were complet-
ed at a priori defined dates. Patients who did not complete eight weeks 
of treatment within the defined period, were excluded from analyses. 
Both dropouts and different recruitment periods accounted for differ-
ent subsamples. As part of our feasibility report, we discuss reasons for 
dropout extensively in paragraph 6.3.1 and supplement 6.5. 

6.2.2  EEG-INFORMED PROTOCOL VS TAU

Patients had to meet a DSM-5 classification for non-psychotic depres-
sion, and a BDI-score≥14. For those receiving EEG-informed prescrip-
tion (for a full decision tree also see figure 6.1, page 123), the EEG out-
come was shared with the designated nurse practitioner or psychiatrist. 
Together with the patient, it was decided whether the advice was to be 
followed. The clinician’s decision on whether to follow the advice was 
leading, and the EEG recommendation was not binding. Without in-
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formed consent, the advice was still offered, but data were not recorded 
for scientific purposes nor included in this report.
In case of TAU, AD choice resulted from the prescriptive decisions 
of a psychiatrist or nurse practitioner. In case of a first depressive 
episode, the prescription of an AD was based on national guidelines 
for prescribing first-choice ADs. In case of a recurrent depression, ap-
plicable national guidelines were followed. Where available, informa-
tion on earlier (un-)successful drug treatments of either the patient 
or first-degree relatives was considered. 
The patient signed an informed consent and data were coded anon-
ymously. Treatment and progress were monitored. BDIs were filled 
out at fixed times: at intake, prior to each form of medical treat-
ment, and eight weeks after each started medication. Registration 
of clinical patient data consisted of the following variables: previous 
treatments, current and/or previous diagnoses/classifications, EEG 
(advice) outcome, medication during EEG, following or ignoring the 
advice, which AD was prescribed, which psychological treatment was 
followed, and all BDI measurements.

6.2.3  PRE-TREATMENT ASSESSMENTS 

EEG recordings were performed using a standardized methodology 
and platform (Brain Resource Ltd., Australia). Details of this proce-
dure (Arns et al., 2016) and of its reliability have been published else-
where (Paul et al., 2007; Williams et al., 2005). In summary, patients 
were seated in a sound and light attenuated room. EEG data were 
acquired from 26 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, 
T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz and O2 
(ANT Waveguard-cap; NuAmps; 10-20 electrode international sys-
tem). EEG was assessed for two minutes with eyes open (EO, with the 
patient asked to fixate on a red dot on the screen) and two minutes 
with eyes closed (EC). The patient was instructed to remain relaxed 
for the duration of the recording. The operator did not intervene 
when drowsiness patterns were observed in the EEG. Data were ref-
erenced to averaged mastoids with a ground at AFz. Horizontal eye 
movements were recorded with electrodes placed 1.5 cm lateral to 
the outer canthus of each eye. Vertical eye movements were recorded 
with electrodes placed 3 mm above the middle of the left eyebrow 
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and 1.5 cm below the middle of the left bottom eyelid. Skin resistance 
was <10K Ohms for all electrodes. The sampling rate of all channels 
was 500 Hz. A low pass filter with an attenuation of 40 dB per decade 
above 100 Hz was employed prior to digitization.

6.2.4  EEG PROCESSING 

EEG processing was conducted similarly to Arns et al. (2016), and 
performed by Brain Resource. The screening for subclinical EEG ab-
normalities was performed by trained psychologists (NvdV and MA), 
according to methods described in Arns et al. (2017). When an EEG 
provided inconclusive patterns or events, a board-certified neurolo-
gist/clinical neurophysiologist was consulted (MvP). EEGs of patients 
with TAU were not analyzed. 
To determine EEG-informed prescription to AD, we employed the 
algorithm displayed in figure 6.1.

Figure 6.1: Decision tree used for EEG-informed treatment allocation and clinical decision 
making. In the first step, sertraline was advised when a patient displayed subclinical abnor-
mal EEG activity (IEDs or slowing of the EEG), or an alpha peak frequency (APF) below 8 Hz. 
For the second step, males were advised to start escitalopram. For females, escitalopram or 
sertraline were advised for a right-sided FAA, and venlafaxine was advised when a left-sided 
FAA was observed.

YesNo

Abnormal EEG (IEDs/slowing of the EEG)?¹

YesNo

Sertraline

YesNo

APF < 8 Hz?¹

Escitalopram

Escitalopram or Sertraline

Venlafaxine

Sex²

FAA Ű 0

1Arns, M., Gordon, E., & Boutros, N. N. (2017)
2Arns, M., Bruder, G., Hegerl, U., Spooner, C., Palmer, D. M., Etkin, A., ...Gordon, E. (2016)
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6.2.5  STATISTICS

Clinical response was determined after eight weeks of treatment 
with the improvement as assessed by the BDI as primary outcome 
measure. The %BDI change from baseline to week-8 was chosen for 
analyses due to its normal distribution (as opposed to the non-nor-
mally distributed absolute difference). Remission was defined as a 
BDI score ≤12 and response was defined as a ≥50% reduction after 
eight weeks. Differences in age, sex, depression severity at baseline, 
and whether psychotherapy supplemented medication, were tested 
using one-way ANOVA or non-parametric tests, depending on dis-
tributions or variable type (continuous or binomial). When group 
differences were significant, the respective variable was added to the 
main analysis as covariate or fixed factor, depending on its nature. 

The main analysis consisted of a univariate ANOVA, for investigat-
ing group differences in %BDI change. Significant effects were com-
plemented with Cohen’s d effect size and Number Needed to Treat 
(NNT, http://www.clincalc.com), based on %BDI change. In addi-
tion, odds ratios (ORs) were calculated for group differences in re-
mission and response rates. Given this feasibility trial was expected 
to have insu�cient statistical power to distinguish the groups and 
we had clear a priori expectations of the direction of effects (Ruxton 
& Neuhäuser, 2010), one tailed statistics were used to prevent over-
looking relevant findings that require further investigation in future 
trials. Statistical significance was therefore set at p < .10. Power analy-
sis to inform future trials were performed to derive minimum sample 
sizes for adequate study power (http://www.clincalc.com).

6.3  RESULTS 
A total of 122 MDD patients who completed both baseline and week-
8 assessment and met inclusion criteria, were included in our anal-
yses, 70 with EEG-informed prescription and 52 controls with TAU. 
Dropout reasons and attrition are reported in great detail in supple-
ment 6.5. Table 6.1 shows demographic information, and response 
and remission rates for included patients. There were no differences 
between the two treatment groups regarding age (Mann-Whitney 
U), sex and concurrent psychotherapy (χ2). Patients with TAU had 
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significantly higher BDI scores at baseline than those with EEG-in-
formed prescription (Mann-Whitney U, p = .048). 

6.3.1  FEASIBILITY

For an extensive qualitative analysis of the study’s feasibility, we re-
fer to supplement 6.5. In general, both clinicians and patients were 
satisfied with the new protocol. The practical implementation in the 
regular logistics of this Dutch mental health outpatient clinic proved 
to be feasible. Out of 195 initially included patients, we were able to 
analyze 122 (70 EEG-informed, 52 TAU). Attrition was mostly due to 
patients not filling out questionnaires at week 8 (10%), and patients 
stopping taking the AD (6%), which was not specific to the EEG-in-
formed group. Other specific attrition reasons for the EEG-informed 
group were choosing a different AD due to earlier experience with 
the advised AD (4%), wanting to remain with their current AD, which 
was not the advised AD (3%), and the clinician choosing a different 
AD (5%). 

6.3.2  TREATMENT OUTCOME 

The EEG-informed prescription group demonstrated significantly 
better response (%BDI change) relative to the TAU group (F(1,120) 
= 5.235, p = .024), with a small to medium effect size of d = 0.42 
and NNT of 8. A sensitivity analysis with the addition of covariate 
baseline BDI score to the model, yielded the same significant effect 
(F(1,119) = 4.612, p = .034) with the covariate itself being non-signifi-
cant (F(1,119) = 0.321, p = .572). Treatment outcome can be found in 
table 6.2 on page 126. Interestingly, in the EEG-informed group the 
representation of the three ADs was quite comparable on the group 

TAU

Table 6.1  Demographic features of the two patient groups

n

Females n (%)
Average age (years M(SD))
BDI baseline (M(SD))
Supplemented psychotherapy

52
25 (48%)
37.2 (14.54)
35.4 (9.61)
42 (71%)

EEG-informed

70
44 (62%)
40.3 (14.85)
31.7 (10.56)
50 (71%)

Total

122
69 (57%)
38.9 (14.74)
33.3 (10.28)
82 (71%)
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level (n = 22-24 per AD) and clinical benefit per individual drug was 
also quite comparable (range: 35.1-38.5% BDI change, not significantly 
different between drug groups) similar to the iSPOT-D study. Note 
that all patients in the EEG-informed group either had no earlier 
treatment failure experience with the advised AD, or did not receive 
the adviced AD before.

Intention To Treat analysis
With large dropout rates in both groups, we performed an intention 
to treat (ITT) analysis (n = 195). All dropout patients were assigned 
their baseline BDI value and thus assigned scores of 0 on %BDI 
change, response and remission. Repeating the treatment outcome 
analyses yielded similar group difference for %BDI change (F(1,193) = 
3.726, p = .022).

6.3.3  FUTURE SAMPLE SIZE CALCULATION

Power calculation showed that with an alpha set on 5%, a power of 
85%, and an enrollment ratio of 1:1.2 (TAU:EEG-informed, based on 
current subsample sizes) a total of at least 213 participants would be 
required to have su�cient statistical power in a future study (97 pa-
tients with TAU and 116 patients with EEG-informed prescription). 
This was based on the primary outcome measure, percentage im-
provement on the BDI.

TAU

Table 6.2 Treatment outcomes for the two patient groups

n

BDI-II baseline to week 8
% BDI-II change
Escitalopram (n = 24)
Sertraline (n = 24)
Venlafaxine (n = 22)
Remission
Response

52
35.4 – 27.1
23.9%*

17%
27%

EEG-informed

70
31.7 – 20.2
36.8%*
35.1%
38.5%
36.7%
29%
39%

Total

122
33.3 – 23.1
31.3%

34%
24%

*p < 0.05
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6.4  DISCUSSION
We sought to prospectively test three previously identified EEG bio-
markers using a feasibility trial. The implementation of the EEG-in-
formed medication prescription algorithm proved feasible. The 
algorithm was su�ciently practical and satisfactory. The involved 
professionals were motivated to follow instructions and advice. It led 
to EEG-based prescription in 99 of 108 patients who received an EEG 
advice (89%), of which treatment outcome was known in 70 patients 
(65%). Major reasons for attrition were not specific to the EEG-in-
formed algorithm, but related to patients not filling out question-
naires at week 8 (10%) or patients stopping taking the AD (6%). Most 
prominent attrition rates specific to the EEG-informed procedure 
comprised 12 subjects (11%) who either chose a different AD due to 
earlier experience with the advised AD, wanted to remain with their 
current AD which was not the advised AD, or for whom the clinician 
chose a different AD. 

EEG-informed prescription resulted in significantly improved effec-
tiveness with a small to medium effect size (d = 0.42), with response 
rates increasing from 27% to 39%, remission rates increasing from 
17% to 29%, and an NNT of 8.

The TAU group presented with significantly higher baseline BDI 
scores. However, this is unlikely to change the above conclusion, since 
baseline BDI did not interact with the percentage BDI change. Fur-
thermore, if higher baseline severity would have any effect, more room 
for improvement is expected with a regression to the mean in the TAU 
group (Mora, Nestoriuc, & Rief, 2011). A lack of this outcome strength-
ens our results for the EEG-informed group. It is highly unlikely that 
the group difference at baseline affected our main outcome.

To acquire su�cient statistical power for determining meaningful 
group differences in future controlled trials, we have established that 
it is feasible to recruit patients in new trials. Power calculation indi-
cated that future trials using clinical improvement on the BDI over 
an eight week period of treatment as their primary endpoint, would 
require 218 patients. These numbers refer to patients with analyz-
able data, given the attrition rate of 35%. Attrition rates in future tri-
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als will presumably be lower, given the naturalistic character of our 
study, and the average of 30% in a large review of AD trials (Woolley, 
Cardoni, & Goethe, 2009). Assuming an attrition rate of 30% suggests 
a future trial sample of 311 patients.

This first evidence from a prospective replication study, provides 
strong support for a future where EEG biomarkers can be used to 
inform clinical decision making, in this case treatment selection.

Recently, this particular application of EEG biomarkers was ques-
tioned, for publication bias, lack of proper replication studies, and 
out of sample validation (Widge et al., 2019). The present results 
provide the first prospective test of a priori defined EEG biomarkers, 
and thus provide strong evidence for the clinical use of these bio-
markers, which should be confirmed in future controlled randomized 
controlled studies. In addition to the presence of EEG abnormality 
favoring response to sertraline (Arns et al., 2017), we previously have 
demonstrated that the degree of EEG normalization after eight 
weeks of treatment with sertraline, mediated clinical response (Van 
der Vinne et al., 2019a). These results suggest that sertraline impacts 
mechanistically on this EEG abnormality, i.e., by possibly having mild 
anticonvulsant properties. From a neurochemical perspective, it has 
been reported that sertraline, relative to other SSRIs, has the most 
pronounced dopamine transporter (DAT) inhibitory activity (San-
chez et al., 2014). Kanekar and colleagues also suggested a differential 
working mechanism in sertraline compared to other ADs, consid-
ering the increased inhibition of DAT by sertraline (Kanekar et al., 
2018). However, further studies should investigate the exact neuro-
biological underpinnings further.

For the neurobiological underpinnings of FAA, the question is which 
role it has in the functional networks involved in depression, espe-
cially as a reflection of deeper nodes such as the subgenual anterior 
cingulate and other limbic structures. Given that FAA was associated 
to blood-oxygen-level-dependent (BOLD) activity in the left amyg-
dala and emotion regulation (Zotev et al., 2016), FAA might reflect 
fronto-amygdala network activity. Previously reported amygdala AD 
response patterns (Carceller et al., 2018, in mice; Sheline et al., 2001, 
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in humans) as well as sex differences within the amygdala (Douil-
lard-Guilloux et al., 2017), could help explain the sex-specific ability of 
FAA in predicting treatment outcome. The evidence however, remains 
indirect. The lack of multimodal studies that provide insight into 
causal relationships currently limits our ability to explain the relevant 
underlying neural circuitry behind the FAA-SSRI-response association.

An important limitation of this study, is the lack of random assign-
ment to the groups, and possible non-specific and/or expectancy ef-
fects. Allocated patients were aware that the prescribed medication 
was based on their EEG, therefore expectancy effects might have 
played a role. On the other hand, the results derived from this nat-
uralistic set-up are more likely to generalize to clinical practice, en-
abling us to investigate effectiveness (opposed to placebo-controlled 
e�cacy studies where patients receive financial incentives to partic-
ipate in studies, potentially boosting e�cacy rates). Future studies 
should employ a randomized design where patients are unaware of 
how their assignment to treatment was done (e.g. TAU vs EEG-in-
formed). Furthermore, longer follow-up periods are needed since 
non-specific (placebo) effects are usually brief. Results are neverthe-
less promising, given our preliminary effect size of 0.4, compared to 
placebo controlled effect sizes of ADs of 0.3 (Cipriani et al., 2018). 
Further investigation in prospective clinical trials of this EEG-in-
formed medication prescription is warranted.

CONCLUSIONS

To the best of our knowledge, this was the first prospective EEG bio-
marker-based allocation feasibility study in MDD using a priori de-
fined EEG Biomarkers. Our proposed protocol proved to be feasible, 
with more symptom improvement in patients allocated to ADs based 
on specific EEG biomarkers (FAA, APF, and paroxysmal activity). This 
improvement approached a medium effect size, despite the com-
parison of different patient groups taking the same AD treatments. 
Hence, it is very promising to follow up with clinical trials, on the 
road to personalized treatment, that might be preceded by EEG-in-
formed treatment allocation as an intermediate step.
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6.5 SUPPLEMENT: FEASIBILITY
In general, both clinicians and EEG-informed allocated patients 
were satisfied with the new protocol. They understood that actual 
improvement was unknown beforehand. The practical implemen-
tation in the logistics of this Dutch mental health outpatient clinic 
proved to be feasible, with an active role of the researchers in terms 
of planning and monitoring. With two trainings and annual update 
meetings, clinicians felt su�ciently comfortable with conveying the 
EEG advice to patients. When patients had questions, they were re-
ferred to the researchers (NvdV and ME). One nurse practitioner 
mentioned that this protocol particularly fits first-time prescriptions. 
Another indicated a feeling of lack of control, not making decisions 
as a clinician, although this was not perceived as very limiting.

The time to EEG outcome was experienced differently between cli-
nicians, ranging from satisfyingly quick to very long. In the latter 
case, with severely depressed patients needing acute help, the clini-
cian chose to skip the EEG and prescribe instantly. These were ex-
ceptional situations. With longer institutional waiting lists, patients 
could start with EEG-informed prescribed ADs similarly to patients 
with TAU. Theoretically, in times of shorter waiting lists, prescribing 
TAU would take place approximately 10 days earlier than following 
the protocol (which did not occur during this study, with current 
waiting lists).

One patient discontinued treatment due to severe side effects, after 
the clinician mistook instructions and quickly built up to a norad-
renergic dosage of venlafaxine. We would like to stress that EEG-in-
formed prescription of venlafaxine should not necessarily entail a 
noradrenergic dosage. Guidelines to venlafaxine prescription can be 
followed instead.

S6.5.1  ATTRITION

Detailed information is presented in the study sample overview in 
figure S6.1 on page 132. Numbering in the figure refers to the super-
scripted numbering in the following text. Out of eighty-seven pa-
tients planned to receive TAU, 80% actually started treatment and 
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60% completed treatment and measurements, compared to 89% of 
108 patients receiving EEG-informed prescription, and 65% complet-
ing treatment and measurements. 18% of patients with TAU1 and 3% 
of EEG-informed7 chose to remain with their current AD, they want-
ed to try increasing dosage first. 4% of EEG-informed chose a differ-
ent AD because to prior experiences7. 

Several patients dropped out before follow-up measurements could 
be executed. Twelve patients stopped taking their AD (6% of TAU2, 
7% of EEG-informed8). All five with TAU and three patients with 
EEG-informed prescription stopped due to side effects. One patient 
with EEG-informed prescription stopped after sleeping improved, 
which was su�cient for him. Of two patients, reasons are unknown. 
Nine patients went out of treatment in this clinic, it was unknown 
whether they were still taking ADs (6% of TAU3, 4% of EEG-in-
formed9). Nineteen did not fill out the questionnaire (8% of TAU4, 
11% of EEG-informed10). Four questionnaires were mistakenly not 
planned by the research team (1% of TAU6, 4% of EEG-informed13).

Clinician’s decisions lead to attrition as well. In 1% of the TAU group, 
the clinician chose to stop the AD the patient was already taking, be-
cause of side effects5. For EEG-informed patients, 3% of the clinicians 
chose to remain with the AD the patient was already taking11. Rea-
sons for this were: wanting to try increasing dosage first and want-
ing to wait whether the small improvement with current AD would 
increase. For 2% of these patients, the clinician chose a different AD12. 
In one case, the prescription of an SSRI was deemed as not an option 
anymore. The other patient had a slow metabolizer for venlafaxine.
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Figure S6.1: Study sample overview of inclusion of patients. 
1-13 numbering refers to the superscripts in the paragraphs describing figure results. 
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In this dissertation, we described our first steps towards the imple-
mentation of an EEG biomarker informed protocol, with the aim 
to improve treatment outcome in depressed patients. Focusing 

on differences in treatment response enables us to reduce heteroge-
neity, which characterizes the targeted population. By establishing 
biomarkers related to treatment response in particular subgroups 
within the heterogeneous MDD group, we aim to improve treatment 
outcome.
In this last chapter, I will present our results in context of both older 
and current literature. I will discuss three EEG biomarkers in terms 
of: state and trait effects, underlying neurobiological explanations, 
their role in our successful prospective biomarker trial, and automat-
ed detection of the specific biomarker abnormalities in the EEG.

7.1  UNDERSTANDING BIOMARKERS
Frontal alpha asymmetry (FAA) has a long history in emotion re-
search, with ensuing studies in depression. Over three decades ago, 
pioneering work started in FAA. The diathesis model by Davidson 
and Tomarken in 1989 (described in Henriques & Davidson, 1991; 
see also Davidson, 1998) linked a relative excess of alpha activity on 
the left side (compared to right) to more negative affect and with-
drawal related emotion. Such left-sidedness has often been found in 
depressed patients throughout the years (Beeney et al., 2014; Bell et 
al., 1998; Debener et al., 2000; Fingelkurts et al., 2006; Gollan et al., 
2014; Gotlib et al., 1998; Harmon-Jones & Allen, 1997; Henriques & 
Davidson, 1991; Jaworska et al., 2012; Kemp et al., 2010; Pizzagalli et 
al., 2002; Schaffer et al., 1983). In line with these prior studies, more 
recent research was focused on FAA as discriminant biomarker for 
(risk of) MDD and non-MDD. Given that studies since approximate-
ly the year 2000 became less conclusive about this distinction, we 
wanted to find out:
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IS THE DEPRESSED POPULATION BEST CHARACTERIZED BY HOMOGENEITY 

OR HETEROGENEITY?

In the meta-analysis of chapter 2, we investigated the diagnostic val-
ue of frontal alpha asymmetry (FAA) for MDD. As discussed above, 
this relationship was demonstrated in several studies. Given some 
more recent studies (especially the largest study to date, iSPOT-D) 
could not corroborate this, we decided to conduct a systematic re-
view and meta-analysis. In this meta-analysis, we found a small and 
non-significant mean effect size of the discriminant property of FAA, 
accompanied by highly significant heterogeneity across studies. This 
finding suggests that FAA is not a reliable diagnostic biomarker for 
MDD. Despite the characterization of FAA as the most clearly estab-
lished marker of depression vulnerability (Reznik & Allen, 2018), the 
number of studies directly linking FAA to MDD is declining, as more 
recent studies tend to focus more on the relationship of FAA with 
emotion and affect, instead of MDD specifically.

Furthermore, the meta-analysis indicated that earlier study findings 
were most likely driven by underpowered studies. Our meta-analysis 
demonstrated that only studies with a sample of >300 subjects were 
consistent in their results. Results of these studies were characterized 
by a lack of a group difference. Furthermore, cross-sectional findings 
confirmed our hypothesis that a high level of heterogeneity in FAA 
in the depression population exists, which is in line with previous 
methodologically sound studies (Deldin & Chiu, 2005; Kentgen et al., 
2000; Knott et al., 2001; Price et al., 2008; Quraan et al., 2014). 
We cross-sectionally identified subgroups of severely depressed pa-
tients of 53 years and older, where males and females show opposite 
outcomes on FAA (comparable to Jesulola et al., 2017). This finding 
indicates that when studies are underpowered with overrepresenta-
tion of these older subgroups from either sex, the results can become 
biased. Although we split the MDD group based on statistical out-
come, the resulting sample size of the subsamples was small, which 
is why this finding requires further replication.

In conclusion, with respect to FAA, the depressed population is best 
characterized by heterogeneity on the group level. These new in-
sights in heterogeneity suggest a different application of FAA, actu-
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ally utilizing the interindividual variation in this biomarker. This can 
potentially lead to optimized characterization of relevant homogenic 
subgroups and subsequent implications for a personalized treatment 
for the increasing number of depressed patients. Stratification based 
on these subgroups could eventually allow for precision psychiatry, 
which could replace the current expensive stepped-care model.

WHAT CAN WE LEARN FROM STATE, TRAIT, AND DRUG EFFECTS ON THESE 

BIOMARKERS?

For a protocol that relies on prognostic biomarkers, the prognostic 
value is not the only essential information we need to confidently 
employ this new method. Besides knowing which characteristics can 
separate responders from non-responders, we should have knowl-
edge on the influence of the moment of measurement of these bio-
markers. What can we learn from state, trait, and drug effects on 
these biomarkers? We addressed this in chapters 3 and 4.

We studied the stability of FAA in MDD patients during antidepres-
sant treatment in chapter 3. FAA did not change significantly after 
eight weeks of escitalopram, sertraline, or venlafaxine treatment. 
FAA is therefore concluded to be a stable trait, not influenced by state 
and drug effects. This conclusion is in line with most of the literature 
(Allen et al., 2004; Bares et al., 2019; Bruder et al., 2008; Davidson et 
al., 2003; Deldin & Chiu, 2005; Gollan et al., 2014; Keune et al., 2011; 
Spronk et al., 2008; Sutton & Davidson, 1997; Tomarken et al., 1992), 
except for one study (Debener et al., 2000). Stability makes it suitable 
for sex specific treatment prediction under challenging circumstanc-
es such as state, time, the use of common antidepressive agents, and 
drug changes.

In chapter 4, we aimed to extend our earlier observations that de-
pressed patients with a subclinically abnormal EEG at baseline are 
more likely to be a non-responder to venlafaxine or escitalopram. Ab-
normalities could consist of spike-wave discharges, diffuse slowing, 
or a slow background pattern operationalized using the frequency at 
which alpha waves are peaking (APF). This seems to suggest that ser-
traline is the preferred treatment in this subgroup (Arns et al., 2017). 
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We investigated whether abnormalities diminished after eight weeks 
of AD treatment, and how this related to response. EEG normaliza-
tion patterns did not significantly differ between sertraline and other 
AD treatments. However, when comparing sertraline treatment to 
the other ADs within the subjects who had a normalized EEG at end-
point, response was more likely to be achieved with sertraline rela-
tive to the other treatments with a likelihood of 5.4 times. Hence, a 
subgroup was identified in which abnormalities were present prior to 
treatment, but disappeared afterwards, and showed a better response 
to sertraline than other AD treatments. The association with response 
indicates that we hereby identified a mediating biomarker (see Reznik 
and Allen (2018) for a discussion on mediating biomarkers).

New literature on the different antidepressant profiles has barely clar-
ified how ADs might have consequential effects on the (abnormal) hu-
man EEG. Although the generalization of our results on EEG abnor-
malities to epileptogenesis is uncertain, it might help explain in part 
how depressed patients with EEG abnormalities are best treated with 
sertraline. But further research is necessary to understand the mech-
anisms that may be underlying the differential effects of treatments.
In the past, the importance of EEGs in psychiatry was suggested 
(Boutros, 2018; Inui et al., 1998; Shelley & Trimble, 2009; Yasuhara 2010). 
However, despite prior findings and those in the current paragraph, the 
EEG still barely has any clinical applications in psychiatry that are suf-
ficiently science-based. This might be a consequence of abnormalities 
being linked to the disorders themselves rather than to treatment out-
come. Our focus on improving treatments instead of diagnostics may 
facilitate the introduction of EEG assessment in psychiatry.

All in all, the influence of ADs on the EEG, and therefore EEG biomark-
ers extracted from it, is characterized by both stability and changes: 
Whereas FAA is reflecting a trait and is thus not sensitive to changes in 
state and drug effects, mediation of AD response by normalization of 
EEG abnormalities suggests a direct relation to the acute pathophys-
iology in those patients, being sensitive to state changes. This latter 
finding is also suggestive of a possible drug repurposing of sertraline, 
as a (mild) anticonvulsant, however, that will require further study. 
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WHAT CAN WE LEARN ABOUT THE UNDERLYING PATHOPHYSIOLOGY WHEN 

STUDYING THE TIME COURSE OF BIOMARKERS?

Although biomarker based treatment outcome results are promis-
ing, they do not explain why these biomarkers actually have value in 
treatment prediction. We sought to provide underlying explanations 
for the prognostic value of both FAA and subclinically abnormal EEG 
activity. This was discussed in chapters 4 and 6, and in earlier studies 
by Arns et al. (2017; 2016). 
For working mechanisms of EEG abnormalities, we gained only little 
insight into the association with sertraline and treatment response. 
Sanchez et al. (2014) did find differing pharmacodynamic profiles in 
mice, with sertraline containing the most pronounced dopamine 
active transporter inhibitory activity, compared to escitalopram and 
paroxetine. Kanekar et al. (2018) corroborated this through animal 
models; they suggested improved dopaminergic transmission by ser-
traline, as opposed to paroxetine and escitalopram. However, it re-
mains unclear how this could relate to the (subclinically abnormal) 
human EEG. This biomarker is considerably less investigated than 
FAA, and more research is necessary to obtain more insight.

Remarkable is the fact that FAA is found to be a trait, while it seems 
to predict at the same time: it can indicate change, while remaining 
stable itself. This seems contradictory. The question is whether this 
can be explained by which role alpha oscillations have in the depres-
sion network, especially when the activity is by definition measured 
at the surface of the skull. In a first study that measured resting state 
EEG (CSD) and fMRI in healthy males, Kaur and colleagues (2020) 
showed how several parts of the brain are either normally or reverse-
ly correlated to FAA. More specifically, Zotev and colleagues (2016) 
discovered a pathway by combining EEG and fMRI measurements, 
correlating FAA to blood-oxygen-level-dependent (BOLD) activity 
in the left amygdala. Their results suggested FAA variations to be 
strongly related to emotion regulation. Treatment with ADs result-
ed in a reduction of exaggerated reactivity to emotional faces in the 
left amygdala (Sheline et al., 2001). This was immediately visible after 
a single dose of the SSRI citalopram in another study (Murphy et 
al., 2009). On the cellular level, in mice, SSRI fluoxetine treatment 
coincided with the reorganization of inhibitory circuits in the baso-
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lateral amygdala, through alterations in somatostatin interneurons 
(Carceller et al., 2018). Striking is the fact that a number of female 
depressed patients displayed reduced gene expression of this exact 
somatostatin, with no such display in males (Douillard-Guilloux et 
al., 2017). By integrating these results, we might provide possible 
components of a larger mechanism (i.e. depression network) that 
could underlie treatment prediction by FAA, specifically in females. 
However, such integration for understanding the role of alpha oscil-
lations in the depression network is complicated: our confirmation 
of FAA being a trait in chapter 3, challenges the correlation between 
FAA and amygdala BOLD activity, when possibly state related (AD 
treatment) cellular changes do occur in the amygdala. A lack of in-
sight might in part be a consequence of attempting to discern the 
depression network with multiple – and differing – single-modal-
ity studies. The low number of multimodal studies that addresses 
the entire underlying mechanism, currently limits the possibilities 
of coherently explaining our outcomes in FAA predicted treatment 
outcome. The obscured underlying pathophysiology warrants more 
future studies, and in particular multimodal studies.

7.2  BIOMARKERS IN CLINICAL PRACTICE
As I introduced in this dissertation, clinically accepted biomarkers 
for detection and treatment of disorders in the field of mental health 
are not readily available. In MDD, several biomarkers in the EEG 
have been proposed, including FAA, the APF, and subclinical EEG 
abnormalities. As reservations exist on true biomarker effectiveness 
in MDD (Widge et al., 2019), replication studies and more knowledge 
on biomarkers’ characteristics are needed to understand their full po-
tential. Pioneering in prospectively testing the predictive value of the 
most promising EEG biomarkers, we aimed to explore:

CAN EEG BIOMARKERS BE RELIABLY IMPLEMENTED FOR THE TREATMENT 

OF DEPRESSION?

Several reports on treatment outcome through EEG biomarkers 
that were identified in the international Study to Predict Optimized 
Treatment (iSPOT-D), revealed the three most promising: FAA, APF, 
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and subclinical EEG abnormalities. In FAA, a right frontal dominant 
FAA was associated with response to SSRIs, and left frontal dominant 
FAA was associated with non-response to SSRIs in females (Arns et 
al., 2016). Patients with a low APF or subclinical abnormalities, were 
more likely to be non-responsive to the ADs escitalopram and ven-
lafaxine, whereas no such response effect existed for sertraline (Arns 
et al., 2017). 
The identification of the specific subgroups in these reports enabled 
us to create a stepwise protocol, in which we integrated the biomark-
ers EEG abnormalities, APF and FAA. We discussed this extensively 
in chapter 6, where we presented the first results on a prospective 
feasibility trial. In one of two groups, ADs were prescribed according 
to this biomarker-based protocol. This is an alternative to the usual 
guideline informed, ‘random’ prescription by psychiatrists, for the 
same type of ADs, which was done in the second group. The step-
wise protocol for prescribing antidepressants to patients appeared 
to be su�ciently practical and satisfactory. The involved clinicians 
and other professionals were motivated to follow instructions and 
advice. Moreover, patients with an EEG-informed prescription im-
proved significantly more as measured with %BDI change (the only 
normally distributed outcome measure) with a remission rate of 29%, 
than patients with treatment as usual, with a remission rate of 17%. 
Based on the current results, we cannot disentangle specific AD ef-
fects from non-specific (placebo) effects. Our sample size calculation 
indicates that future studies will need an n ≥ 218. 
For useful testing in the clinic, biomarkers are expected to predict 
good treatment outcome with 90% accuracy (sensitivity) and indicate 
less than 10% false positives (specificity; Brower 2011). Generally, a 
binary choice is to be made between affected vs non-affected, or to 
treat vs not-to treat. This has major ethical implications, i.e. at what 
sensitivity/specificity is one allowed to discourage a treatment? How-
ever, in stratified psychiatry, we leverage the notion that there are 
multiple evidence based treatments in depression, such as cognitive 
behavioral therapy, SSRIs, SNRIs, repetitive transcranial magnetic 
stimulation, etc. (see figure 7.1, following pages). Randomized studies 
such as iSPOT-D have shown that by using randomization to three 
different antidepressants, no differences in e�cacy are found on the 
group level (Arns et al., 2016). Therefore, if the biomarkers that we



144

Figure 7.1: Depiction of different types of treatment allocation, of which stratification in 
psychiatry is recommended in this dissertation, as opposed to one-size-fits-all psychiatry or 
precision psychiatry.
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discussed retrospectively have some value in explaining the hetero-
geneity between response and non-response, these could be used 
to guide an individual patient to their preferred treatment, or EEG 
biomarker informed treatment stratification. Instead of a binary go/
no-go decision, the end result of this process is an evidence based 
treatment, where high sensitivity/specificity is not always required.

In sum, results from our feasibility trial indicate that the implemen-
tation of biomarkers remains worthy of further investigation. The 
naturalistic design is reflective of the clinical practice, enabling us to 
investigate real-world effectiveness. Wondering how we can improve 
the process, we asked ourselves:

WHICH CIRCUMSTANCES ARE NEEDED TO PROVIDE PATIENTS AND  

PROFESSIONALS WITH TRUSTWORTHY ADVICE?

The proposed biomarker protocol was initially developed for the 
benefit of drug-naive depressed patients being prescribed ADs for 
the first time, or after they quit the intake of ADs for a while. We 
assumed EEG assessments to be most optimal when brain function 
is uninfluenced by drugs. But in daily practice, a substantial part of 
patients enters a mental health facility while already on ADs. Either 
because it is not their first depressive episode and they are still taking 
medication since their previous episode, or because the GP already 
prescribed an AD. To serve this particular part of the depressed pop-
ulation, we need to establish the stability of EEG features irrespective 
of medication intake. Specifically of FAA, due to its largest influence 
on the prescription decision. As chapter 3 shows, FAA can be regard-
ed a trait. Its prognostic value is unaffected by state (different mo-
ments in time) or medication intake (with or without escitalopram, 
sertraline and venlafaxine intake). It suggests reliable implementa-
tion in clinical practice as a prognostic biomarker in both medicated 
and unmedicated patients. This enables us to serve a larger part of 
the depressed population. Although effects of medication on the EEG 
have been investigated before (i.e. in sleep stages and delta activity 
with agomelatine (Quera Salva et al., 2007), or EEG abnormalities or 
slowing with olanzapine (Degner et al., 2011)), these results are not di-
rectly translatable to frontal asymmetry in alpha oscillations. Future 



147

studies should reveal whether FAA is stable on the individual level 
under any antidepressant, or any other medication for that matter. 
Current results suggest that circumstances of measurement with 
respect to moment of measurement and medication intake do not 
limit the prognostic advice. Next to establishing which patients can 
be offered trustworthy advice, we also aimed to improve methods by 
replacing visual assessment of the EEG by computational assessment, 
as far as current techniques allow us. We therefore asked:

CAN WE AUTOMATE THE DETECTION OF EEG ABNORMALITIES?

When working with the proposed biomarkers, a difference stands out: 
FAA and the APF are calculated with relatively established methods. 
However, detection of EEG abnormalities is done through visual as-
sessment (for either severe abnormalities found in epilepsy or subclin-
ically deviant activity). In our attempt to approach earlier outcomes of 
determining subclinical abnormalities in chapter 5, we utilized several 
features for the detection of severe deviations in the brain: a convolu-
tional neural network and three spatiotemporal features (the sBSI, the 
tBSI and the dominant frequency). While we could achieve rather good 
overlap in ratings between subjective (visual) and objective (comput-
ed) ratings, unfortunately the objective methods did not significantly 
replicate the primary analysis of treatment prediction from Arns et al. 
(2017) through a combination of the features in a random forest model. 
While this may be partly related to a statistical power issue (i.e. even 
though the total sample consisted of 1008 patients, only 58 out of those 
presented with abnormalities), further optimizations of these methods 
could yield better and more reproducible results. This needs to be fur-
ther investigated in future studies.

In short, automated detection approaches our visual assessment, but 
in its current form it does not yield prognostic value like visual de-
tection. Further development of methods may hold promise in auto-
mating the detection of EEG abnormalities and potential in relieving 
work pressure of clinicians. In the meantime, we will still rely on the 
visual assessment of EEGs for studies in the near future, for which 
we recommend to have two independent EEG evaluators and only 
include EEGs when both evaluators agree.
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7.4  CONCLUSION
The complexity of a heterogeneous depressed population makes it 
impossible to find one or few treatments that fit all. However, this 
heterogeneity can be embraced by employing biomarkers that are ca-
pable of identifying homogenic subgroups, and potentially predict-
ing treatment outcome. Reliability and qualitative improvement can 
be achieved through state-of-the-art computerized automatization 
of this process, although these methods need further development 
before this reaches the psychiatric clinic. Established quantification 
methods however, already seem to allow us to predict response to 
treatment, based on alpha lateralization and alpha peak frequency. 
Combined with qualitative assessment of subclinical EEG abnormal-
ities in our newly developed protocol, the first results for EEG-in-
formed prescription of antidepressants show su�cient feasibility in 
a clinical setting. To our knowledge, this is the first attempt to ele-
vate the treatment of depression through these biomarkers, which 
not only shows the protocol is non-inferior: patients actually show a 
modest increase in symptom improvement. The proposed protocol 
therefore not only makes our methods easily translatable to clinical 
practice, it bears the promise of a small but much needed achieve-
ment of higher treatment standards, in a new form of neuropsychi-
atric health care for depression. 

I hope that this dissertation encourages follow-up research, further 
focusing on informed treatment decision making by (EEG) biomark-
ers. Our studies hold promising results that may pave the road to 
personalized medicine, thereby helping the continuously growing 
group of people suffering from depression. 
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The symptoms of major depressive disorder (MDD) include a 
depressed mood most of the day (nearly every day), loss of 
interest in daily activities, weight gain or diet independent 

weight loss, fatigue, and feelings of worthlessness or guilt (as deter-
mined by the Diagnostic and Statistical Manual of Mental Disorders 
5). A long-lasting course characterizes this mood disorder, which 
in many cases turns into a chronic problem. After a long history of 
describing, explaining and treating this disorder, patients and their 
doctors are still facing the challenges of beating this disease, despite 
research efforts.

MDD is commonly treated with antidepressant medication (AD) or 
psychotherapies like cognitive behavioral therapy. Clinical e�cacy 
rates unfortunately only reach 37% remission after a first AD pre-
scription, with declining remission rates after each consecutive AD 
trial. The large (and continuously growing) prevalence of MDD in 
the world is disconcerting: 183 million people had MDD in 2005, up 
to 216 million in 2015. The development of new AD medication is 
subjected to suspended research and development budgets for cen-
tral nervous system drugs, including ADs. Since a growing group of 
people affected by this disease, new approaches to the treatment of 
MDD are needed to serve this group.

With the aim to improve treatment outcome in depressed patients, we 
described our first steps towards the implementation of an EEG bio-
marker informed protocol. We zoomed in on detailed characteristics 
of biomarkers that proved to be promising. We attempted to utilize 
automated processes for fast, professionalized EEG assessments. We 
developed a protocol in which all knowledge on biomarker informed 
AD prescription was implemented, and performed a feasibility trial. We 
also compared protocol outcomes with the results of a control group.
 



170

Chapter 2 provides an up to date meta-analysis on the diagnostic 
value of the biomarker frontal alpha asymmetry (FAA) in MDD, and 
the evaluations of discrepancies in a large cross-sectional dataset. 
Sixteen studies were included (MDD: n = 1883, controls: n = 2161). 
The main result was a non-significant, negligible ES, demonstrating 
limited diagnostic value of FAA in MDD. The high degree of hetero-
geneity across studies indicates covariate influence, as was confirmed 
by cross-sectional analyses. 

Chapter 3 explores the stability of biomarker FAA, that was demon-
strated in earlier, smaller studies. In patients with MDD, FAA did 
not change significantly after eight weeks of treatment (n = 453,  
p = .234), nor did we find associations with age, sex, depression se-
verity, or change in depression severity. We demonstrate that FAA is 
a stable trait, robust to time, state and pharmacological status. This 
confirms FAA stability. 

Chapter 4 explores whether depressed patients with an abnormal 
EEG show a normalization of the EEG related to AD treatment and 
response, and whether such effect is drug specific. In fifty-seven pa-
tients with subclinical EEG abnormalities, the EEGs did not normal-
ize significantly more with sertraline compared to the other ADs, es-
citalopram and venlafaxine. However, response rates in patients with 
normalized EEG taking sertraline were 5.2 times (significantly) larger 
than in subjects treated with escitalopram/venlafaxine. 

Chapter 5 shows the utilization of computed features, to improve 
the assessment of abnormal EEGs in the depressed population, and 
compare them to our previous methods. The computed features 
CNN probability, the dominant frequency, and the tBSI all success-
fully showed good performance in identifying the specific and no-
tably “light” abnormalities. A random forest model containing the 
combined features, trained on predicting treatment outcome per AD 
drug, did not reliably predict treatment outcome.

Chapter 6 evaluates the results from a first prospective feasibility tri-
al. The EEG biomarkers abnormal EEG activity, alpha peak frequen-
cy, and FAA were prospectively used for EEG informed prescription 



of ADs. Seventy patients were stratified to AD based on their EEG 
biomarkers, 52 patients received AD treatment as usual. In gener-
al, both professionals and stratified patients were satisfied with the 
new protocol and practical implementation proved to be feasible, 
with better symptom improvement in patients who received EEG 
informed prescribed ADs using EEG biomarkers.
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Bij een depressieve stoornis horen een aantal symptomen, 
waaronder een depressieve stemming gedurende een groot 
gedeelte van de dag (bijna elke dag), verlies van interesse in 

alledaagse activiteiten, gewichtstoename of dieet-onaÎankelijk ge-
wichtsverlies, vermoeidheid, en het gevoel van waardeloosheid of 
schuld (zoals beschreven in de Diagnostic and Statistical Manual of 
Mental Disorders 5). Deze stemmingsstoornis wordt gekenmerkt 
door een langdurig verloop, dat in veel gevallen uiteindelijk een chro-
nisch probleem wordt. Na een lange geschiedenis van beschrijven, 
verklaren en behandelen van de stoornis, lopen patiënten en hun be-
handelaren nog altijd aan tegen de uitdaging om de stoornis aan te 
pakken, ondanks het vele onderzoek.

Depressie wordt doorgaans behandeld met antidepressiva (AD) of psy-
chotherapieën zoals cognitieve gedragstherapie. Klinische effectiviteit 
gemeten door remissie, laat echter percentages zien van ten hoogste 
37% remissie na een eerste AD, waarna dit percentage zakt na elke 
opvolgende poging met een AD. De grote (en nog altijd groeiende) 
wereldwijde depressieprevalentie is verontrustend: 183 miljoen mensen 
kregen een depressie in 2005, tot aan 216 miljoen in 2015. De ontwik-
keling van nieuwe antidepressiva is momenteel grotendeels stilgelegd, 
budgetten voor dergelijk onderzoek zijn er nauwelijks meer. Omdat 
een groeiende groep mensen is aangedaan door deze stoornis, zijn er 
nieuwe vormen van onderzoek nodig om deze groep te bedienen. 

Met het doel om de behandeluitkomst voor depressieve patiënten te 
verbeteren, hebben we in dit proefschrift onze eerste stappen bes-
chreven naar de implementatie van een protocol gebaseerd op EEG-bio-
markers. Een biomarker is een meting in het lichaam die informatie 
geeft over of een persoon een ziekte heeft, of voor het bepalen van de 
juiste behandeling. Het elektro-encefalogram (ofwel EEG), meet elek-
trische activiteit in de hersenen door elektroden. In onze studies leg-
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den we de focus op de gedetailleerde eigenschappen van veelbeloven- 
de biomarkers. We probeerden gebruik te maken van geautomatiseerde 
processen voor snelle en geprofessionaliseerde EEG-ver-werking. We 
ontwikkelden een protocol waarin alle kennis over het voorschrijven 
van AD’s gebaseerd op EEG-biomarkers werd geïmplementeerd, en vo-
erden een haalbaarheidsstudie uit. We vergeleken hierbij ook de uit-
komst van ons protocol met de resultaten van een controlegroep.

Hoofdstuk 2 geeft een actuele meta-analyse van de diagnostische 
waarde van de biomarker frontale alfa asymmetrie (FAA) voor de-
pressie. Ook worden de verschillen en afwijkingen in een grote 
cross-sectionele dataset geëvalueerd. Zestien studies werden geïn-
cludeerd (depressie: n = 1883, controles: n = 2161). Het hoofdresultaat 
was een niet-significante, verwaarloosbare effect size, wat aantoont 
dat FAA weinig diagnostische waarde heeft in depressie. De hoge 
mate van heterogeniteit in de verschillende studies geeft aan dat er 
invloed is van andere factoren (covariabiliteit), wat bevestigd werd 
met cross-sectionele analyses.

Hoofdstuk 3 verkent de stabiliteit van de biomarker FAA, wat al eer-
der is aangetoond in kleine studies. In depressiepatiënten veranderde 
FAA niet na acht weken medicatie (n = 453, p = .234). Ook vonden we 
geen relatie met leeftijd, geslacht, de ernst van de depressie, of veran-
dering in de ernst van de depressie. We tonen hiermee aan dat FAA 
een stabiele eigenschap is (trait), die niet veel beïnvloed kan worden 
door tijd, de toestand van een persoon en medicatie. Dit bevestigt de 
stabiliteit van FAA.

Hoofdstuk 4 onderzoekt of depressieve patiënten met een licht af-
wijkend EEG een normalisatie in hun EEG laten zien dat gerelateerd 
is aan de behandeling met een AD en respons, en of dat effect voor-
komt bij één specifiek AD. In 57 patiënten met een afwijkend EEG, 
normaliseerde het EEG niet méér met sertraline, vergeleken met an-
dere AD’s, escitalopram en venlafaxine. Echter, de behandelrespons 
van patiënten met een genormaliseerd EEG die een behandeling met 
sertraline kregen was 5,2 keer (significant) hoger dan in patiënten die 
behandeld werden met escitalopram of venlafaxine. 
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Hoofdstuk 5 laat zien hoe we verschillende kenmerken in het EEG 
berekenden met verschillende methodes, voor het verbeteren van het 
vinden van afwijkingen in EEG’s in de depressieve populatie. Deze 
kenmerken vergeleken we met onze voorgaande methodes gebaseerd 
op met name visuele beoordeling. Het convolutional neural network 
(deep learning), de dominante frequentie, en de temporele brain 
symmetry index registreerden alle drie meer vertraging of afwijk- 
ingen in de groep die we visueel al hadden geclassificeerd als het heb-
ben van “lichte” afwijkingen in het EEG, vergeleken met een groep 
waarin we die afwijkingen visueel niet eerder vonden. Een random 
forest model dat alle berekende kenmerken bevatte, werd getraind 
op het voorspellen van behandeluitkomst per AD. Dit model bleek 
de behandeluitkomst niet te kunnen voorspellen.

Hoofdstuk 6 evalueert de resultaten van een eerste prospectieve 
haalbaarheidsstudie. De EEG-biomarkers afwijkende EEG activi- 
teit, alfapiek frequentie, en FAA werden prospectief gebruikt voor het 
voorschrijven van AD’s. Zeventig patiënten werden gestratificeerd 
naar verschillende AD’s, gebaseerd op hun biomarkers, 52 patiënt-
en kregen behandeling zoals gebruikelijk. Over het geheel genomen 
waren zowel de zorgprofessionals als de gestratificeerde patiënten 
tevreden met het nieuwe protocol. De praktische implementatie 
bleek voldoende haalbaar te zijn. Er werd significant meer verbeter-
ing in symptomen gezien in patiënten die AD’s voorschreven kregen 
op basis van EEG-biomarkers.

CONCLUSIE

De complexiteit van veel verschillen tussen depressieve patiënten 
(heterogeniteit) maakt het onmogelijk om één behandeling te vin-
den die voor iedereen werkt. We kunnen deze heterogeniteit echter 
omarmen door biomarkers te vinden die het mogelijk maken om ho-
mogene subgroepen te identificeren, die mogelijk behandeluitkomst 
kunnen helpen voorspellen. We kunnen meer betrouwbaarheid en 
kwalitatieve verbetering bereiken door de allernieuwste technieken 
te gebruiken, alhoewel deze methodes nog verder ontwikkeld moe-
ten worden voordat ze voor patiënten gebruikt kunnen worden. Aan 
de andere kant zijn er al kwantitatieve methodes die het mogelijk 
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lijken te maken om behandeluitkomst te voorspellen, gebaseerd op 
frontale alfa lateralisatie en alfapiek frequentie. Gecombineerd met 
de kwalitatieve beoordeling van EEG-afwijkingen in ons nieuwe pro-
tocol, laten de eerste resultaten zien dat er voldoende haalbaarheid is 
in een klinische setting. Voor zover wij weten, is dit de eerste poging 
om de behandeling van depressie te verbeteren via deze biomark-
ers, die niet alleen aantoonde dat het protocol niet slechter is dan 
reguliere behandeling: patiënten laten een significante verbetering 
zien in vergelijking met medicatie zoals door de psychiater voor- 
geschreven. Ons voorgestelde protocol maakt het daarmee niet 
alleen mogelijk om onze methodes naar de klinische praktijk te 
brengen, het draagt ook de belofte van een kleine maar nodige ver-
betering van onze behandelnormen, in deze nieuwe vorm van neu-
ropsychiatrische gezondheidszorg voor depressie.
Ik hoop dat dit proefschrift nieuw onderzoek bevordert, dat doorgaat 
met het focussen op het maken van behandelbeslissingen die geïnfor-
meerd zijn door EEG-biomarkers. Onze studies laten veelbelovende 
resultaten zien, die de weg vrij maken naar gestratificeerde psychi-
atrie, waarmee een nog altijd groeiende groep mensen met depressie 
geholpen kan worden. 
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Anthony proberen in te maken met Ticket to Ride!

In mijn eentje had ik dit project niet durven aangaan. De aansporing 
en motivatie die ik van Liekele kreeg zijn hierin mede bepalend ge-
weest, en ik wil deze kans aangrijpen om aan te geven dat ik je hier 
heel dankbaar voor ben. 

Daarnaast heb ik door de jaren heen kunnen steunen op, en genieten 
van zoveel familie en vrienden. Ik stort nogal makkelijk mijn hart 
bij iedereen uit, en daar hebben jullie allemaal een lief, luisterend 
oor voor gehad. Hoewel er nog veel meer mensen zijn, wil ik in het 
bijzonder Thijs, Andrea, Oma, Michèle, Ed, Mira, Romain, Marten, 
Alie, Maaike, Resi en Christina bedanken. Voor alle borrels, etentjes, 
het genieten van jullie kleintjes, het theeleuten en de logeerpartijen: 
dankjulliewel!
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